Accounting for super-, plateau- and mesa-rate burning by lead and copper-based ballistic modifiers in double base propellants: a computational study

Lisette R. Warren,^a Aaron Rowell,^a Patrick McMaster,^b Colin R. Pulham,^a and Carole A. Morrison^{a,*}

^a EaSTCHEM School of Chemistry, University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK.

^b DOSG-ST1, NH4, MoD Abbey Wood, Bristol, BS34 8JH

Supplementary Information

S1: Energy rankings and global minimum structures obtained for Pb_xO_y , ($x \le 6$, $y \le x + 3$) clusters from AIRSS/DFT study

S2: Chemical stabilities of Pb_xO_{y} ($x \le 6, y \le x + 3$) clusters

S3: Energy rankings for sequential carbon attachment to Pb₄O₄₋₆

S4: Radial distribution functions for Pb...Pb distances from carbon binding study to Pb₄O₄₋₆

S5: Fitting functions for lines of best fit for the local force constants vs bond length plots

S6: Energy rankings for sequential carbon attachment to Cu₅O₅

S7: Radial distribution functions for Cu...Cu distances from carbon binding study to Cu₅O₅

S8: Small molecule binding study to metal oxide clusters: NO_2 and CH_2O bond weakening effects

S9: Individual binding modes for NO₂ and CH₂O to $Pb_4O_{4-6}C_{0-12}$ and $Cu_5O_5C_{0-12}$ clusters

S10: Exploring the effects of varying electronic spin states for cluster series $Pb_4O_{4-6}C_{3,12}$ and $Cu_5O_5C_{3,12}$

S1: Energy rankings and global minimum structures obtained for Pb_xO_{y} , ($x \le 6, y \le x + 3$) clusters from AIRSS/DFT study

Figure S1 Possible structures of small clusters of Pb_xO_y and their respective multiplicities generated by *ab initio* random structure searching.

The lowest energy structures thus obtained are summarised in Figure S2. The main structural features observed for the lead oxide clusters are that Pb_xO_y (x = y) appears to result in highly symmetric clusters, in agreement with experimental data.^{1–4} The geometries for the O-rich (x < y) and Pb-rich (x > y) can be viewed as small variants of their nearest (PbO)_x global minimum structure. Many of the clusters are based on oxygen or lead insertion into a Pb₂O₂ ring or Pb₄O₄ cube. In low-oxygen environments, oxygen atoms generally form μ_2 -bridging sites (when $x \le 3$) or μ_3 -bridging sites (when $x \ge 4$) until high symmetry structures are generated for equal Pb/O ratios. The oxygen-rich clusters all feature oxygen atoms binding together.

Figure S2. Global minimum energy structures of Pb_xO_y series found by AIRSS. Legend: dark grey (Pb) and red (O). Point group symmetry shown in brackets.

S2: Chemical stabilities of Pb_xO_y , ($x \le 6, y \le x + 3$) clusters

S3: Energy rankings for sequential carbon attachment to Pb₄O₄₋₆

Energy rankings for sequential carbon additions (3-12 atoms) to Pb_4O_{4-6} , shown up to 200 kJ mol⁻¹ above the lowest energy structure for C_3 to C_9 and 250 kJ mol⁻¹ for C_{12} .

Figure S4 Possible structures for carbon addition to Pb₄O₄₋₆ generated by *ab initio* random structure searching.

S4: Radial distribution functions for Pb...Pb distances from carbon binding study to Pb_4O_{4-6}

Figure S5. Radial distribution function g(r) (left) and integration over g(r) (right) for Pb-Pb distances within Pb₄O₄₋₆, and aromatic-C bound clusters.

S5: Fitting functions for lines of best fit for the local force constants vs bond length plots

Pb-C 7, 9b $y = 768e^{(-\frac{x}{0.3907})} - 0.7873$	0.945
Pb-O 7 $(-\frac{x}{0.2400})$	0.963
(carbon-bound $y = 8267e^{-0.2498} + 0.0079$	
lead oxide)	
C-C 7 $(-\frac{x}{0.1888})$	0.955
(carbon-bound $y = 9271e^{-0.1000} + 0.7497$	
lead oxide)	
C-O 7 $(-\frac{x}{0.1575})$ 0.000	0.996
(carbon-bound $y = 26647e^{-0.1573} + 0.4292$	
lead oxide)	
Cu-C 9 $y = 693e^{\left(-\frac{x}{0.1957}\right)} - 0.9271$	0.853
Cu-O 9a $(-\frac{x}{0.4129})$	0.967
(carbon-bound $y = 400e^{-0.4129} - 2.380$	
copper oxide)	

Table S1. Fitting functions for line of best fits for $M_xO_yC_{12}$ for lead and copper oxide clusters.

C-C	9a	$v = 29981e^{\left(-\frac{x}{0.1612}\right)} + 0.5073$	0.933
(carbon-bound		y _//010 0100/0	
copper oxide)			
C-O	9a	$x = 7522a^{\left(-\frac{x}{0.1957}\right)} = 2.077$	0.912
(carbon-bound		y = 7552e = 5.077	
copper oxide)			

S6: Energy rankings for sequential carbon attachment to Cu₅O₅

Energy rankings for sequential carbon additions (3-12 atoms) to Cu_5O_5 , shown up to 500 kJ mol⁻¹ above lowest energy structure.

Figure S5. Possible structures for carbon addition to Cu₅O₅ generated by *ab initio* random structure searching.

S7: Radial distribution function for Cu...Cu distances from carbon binding study to Cu_5O_5

Figure S6. Radial distribution function g(r) (left) and integration over g(r) (right) for Cu...Cu distances within Cu₅O₅, and aliphatic-C and aromatic-C bound clusters.

S8: Small molecule binding study to metal oxide clusters: NO₂ and CH₂O bond weakening effects

Looking next to the activation of N–O and C–O through bond weakening, graphs of local force constants vs bond length are reported in Figure S7, with the trend line obtained from Christopher et al⁵ (black line) which originates from the N–O and C–O bond strengths from a larger data set of energetic molecules. The strength of the C–O and N–O bonds in CH_2O and NO_2 are strong (black square), at ca. 12 and 9 mDyn Å⁻¹ respectively.

For lead oxide clusters, binding of the small molecules to any cluster results in significant bond weakening, to ca. 4 mDyn Å⁻¹; ~ 60 % reduction in the strength of the bonds. Thus it can be concluded that all species are acting as Lewis acids, and catalytically activate both N–O and C–O bonds.

For copper oxide clusters, the effect for CH_2O binding is similar in the presence of carbon (where binding largely occurs through carbon atoms), whilst binding to copper oxide clusters results in less bond weakening, ca. 50 %. For NO_2 binding, the bond weakening effect is also less pronounced for bare copper oxide. The introduction of carbon provides carbon sites for NO_2 binding, acting as Lewis acids.

Figure S7. N-O (left) and C-O (right) bond weakening from NO₂ and CH₂O binding to lead and copper oxide clusters with varying carbon content for Pb₄O₄ and Cu₅O_{5.} Trend line from ref 5.

S9: Individual binding modes for NO₂ and CH₂O to Pb₄O₄₋₆C₀₋₁₂ and Cu₅O₅C₀₋₁₂ clusters

System	Binding energy	Optimised	Binding energy	Optimised
[Spin]	(kJ mol ⁻¹)	geometry	(kJ mol ⁻¹)	geometry
$Pb_4O_4C_{12}$	-274*	9	-168	
(aromatic)		Port		1
[Doublet]				
				J~
		3		~
	-267	200	-151	and a
		2×		
				0.02
			-140	Op or
	-249			
		Dog-		
				*
		and	-85*	1
	-232*		-00	
	-	State of the second sec		
		•		7 %
				•

Table S2. NO₂ binding to Pb_4O_{4-6} and $Pb_4O_4C_{9,12}$

Pb ₄ O ₄ C ₉ (aliphatic) [Doublet]	-132*	a contraction of the second seco	-113	
	-129	a de la companya de l	-79	States and a second
	-129	a for the second	16	A de la constante
Pb ₄ O ₄ [Doublet]	1	V	30	
	13			
Pb ₄ O ₅ [Doublet]	-48		14	¢,
	-39			
Pb ₄ O ₆ [Doublet]	-80		-2	
	-35		15	

*Binding mode breaks N–O bond.

System	Binding energy	Optimised	Binding	Optimised
[Spin]	(kJ mol ⁻¹)	geometry	energy	geometry
			(kJ mol ⁻¹)	
Pb ₄ O ₄ C ₁₂	-232	and the second s	-61	- i
(aromatic)				
[Singlet]				
	-158		-39	
	-74		-36	
Pb ₄ O ₄ C ₀	-154	0	-58	
(aliphatic)	101	₽ ₽		8
[Singlet]		Contraction of the second		a starter
	-116	Contraction of the second	-1	the second
	-101	Contra the	8	A start and a start a

Table S3. CH₂O binding to Pb_4O_{4-6} and $Pb_4O_4C_{9,12.}$

Pb ₄ O ₄ [Singlet]	-63		13	مور المع
	-62			
Pb_4O_5	-59	Å	2.5	Å
[Singlet]				
	-45		11	
Pb ₄ O ₆	-68	A.	9	8
[Singlet]				
	-34			

System	Binding energy	Optimised	Binding energy	Optimised
[Spin]	(kJ mol ⁻¹)	geometry	(kJ mol ⁻¹)	geometry
Cu ₅ O ₅ C ₁₂ (aliphatic) [Triplet]	-137		-70	
	-132		-9	- And and a second
	-130*	2 Com	2	
	-86	Jaco Con		
Cu ₅ O ₅ C ₉ (aliphatic) [Singlet]	-133		-32	
	-50		3	
Cu ₅ O ₅ [Triplet]	-139		-40	
	-83		9	
	-52		22	

Table S4. NO₂ binding to Cu_5O_5 and $Cu_5O_5C_{9,12.}$

^{*}Binding mode breaks N–O bond.

System	Binding energy	Optimised	Binding energy	Optimised
[Spin]	(kJ mol ⁻¹)	geometry	(kJ mol ⁻¹)	geometry
			14	
$Cu_5O_5C_{12}$	-64	8	-16	2
(aliphatic)		•		N
[Quartet]		Y The second		
	-32	8)-1	24	d 9
		y day		
	-30		41	2
				Y
$Cu_5O_5C_9$	-142	9	-35	0
(aliphatic) [Doublet]				
	-74	y	4	
	-55		97	The second

Table S5. CH_2O binding to Cu_5O_5 and $Cu_5O_5C_{9,12.}$

S10: Exploring the effects of varying electronic spin states for cluster series $Pb_4O_{4-6}C_{3,12}$ and $Cu_5O_5C_{3,12}$

System							
Pb ₄ O ₄ C	Spin	1	3	5	7	9	11
3							
	Energy	-428.66	-428.62	-428.58	-428.50	-428.40	-428.31
	(A.U.)						
	Energy	0	+90	+199	+419	+660	+899
	difference						
	(kJ mol ⁻¹)						
Pb ₄ O ₄ C	Spin	1	3	5	7	9	11
6							
	Energy	-542.75	-542.67	-542.60	-542.51	-542.42	-542.30
	(A.U.)						
	Energy	0	+203	+389	+626	+850	+1184
	difference						
	$(kI mol^{-1})$						

Table S6. Energies for the lowest energy structure vs. spin state for sequential addition of carbon to Pb_4O_{4-6} and Cu_5O_5 . Energy differences compared to the most stable spin states are given in kJ mol⁻¹. Most stable spin states are highlighted in bold.

$Pb_4O_4C_9$	Spin	1	3	5	7	9	11
	Energy	-656.78	-656.77	-656.69	-656.62	-656.52	-656.40
	(A.U.)						
	Energy	0	+23	+222	+407	+687	+1000
	difference						
	(kJ mol ⁻¹)						
$Pb_4O_4C_1$	Spin	1	3	5	7	9	11
2							
	Energy	-770.91	-770.88	-770.85	-770.79	-770.74	-770.64
	(A.U.)						
	Energy	0	+82	+166	+327	+460	+734
	difference						
	(kJ mol ⁻¹)						
$Pb_4O_5C_3$	Spin	1	3	5	7	9	11
	Energy	-503.84	-503.75	-503.64	-503.56	-503.45	-503.34
	(A.U.)						
	Energy	0	+230	+518	+737	+1002	+1308
	difference						
	(kJ mol ⁻¹)						
$Pb_4O_5C_6$	Spin	1	3	5	7	9	11
	Energy	-617.91	-617.86	-617.76	-617.68	-617.60	-617.51
	(A.U.)						
	Energy	0	+137	+394	+603	+822	+1043
	difference						
	$(kI mol^{-1})$						
$Pb_4O_5C_9$	Spin	1	3	5	7	9	11
$Pb_4O_5C_9$	Spin Energy	1 -731.95	3 -731.89	5 -731.83	7 -731.74	9 -731.62	11 -731.55
Pb ₄ O ₅ C ₉	Spin Energy (A.U.)	1 -731.95	3 -731.89	5 -731.83	7 -731.74	9 -731.62	11 -731.55
Pb ₄ O ₅ C ₉	Spin Energy (A.U.) Energy	1 -731.95 0	3 -731.89 +171	5 -731.83 +310	7 -731.74 +541	9 -731.62 +864	11 -731.55 +1049
Pb ₄ O ₅ C ₉	(A) Hor) Spin Energy (A.U.) Energy difference	1 -731.95 0	3 -731.89 +171	5 -731.83 +310	7 -731.74 +541	9 -731.62 +864	11 -731.55 +1049
Pb ₄ O ₅ C ₉	(K) HOT) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹)	1 -731.95 0	3 -731.89 +171	5 -731.83 +310	7 -731.74 +541	9 -731.62 +864	11 -731.55 +1049
Pb ₄ O ₅ C ₉ Pb ₄ O ₅ C ₁	(K) Hor) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹) Spin	1 -731.95 0 1	3 -731.89 +171 3	5 -731.83 +310 5	7 -731.74 +541 7	9 -731.62 +864 9	11 -731.55 +1049 11
Pb ₄ O ₅ C ₉ Pb ₄ O ₅ C ₁ 2	(K) IIOT) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹) Spin	1 -731.95 0	3 -731.89 +171 3	5 -731.83 +310 5	7 -731.74 +541 7	9 -731.62 +864 9	11 -731.55 +1049 11
Pb ₄ O ₅ C ₉ Pb ₄ O ₅ C ₁ 2	(K) HOF) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹) Spin Energy	1 -731.95 0 1 -846.09	3 -731.89 +171 3 -846.11	5 -731.83 +310 5 -846.05	7 -731.74 +541 7 -845.98	9 -731.62 +864 9 -845.92	11 -731.55 +1049 11 -845.83
Pb ₄ O ₅ C ₉ Pb ₄ O ₅ C ₁ 2	(K) HOF) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹) Spin Energy (A.U.)	1 -731.95 0 1 -846.09	3 -731.89 +171 3 -846.11	5 -731.83 +310 5 -846.05	7 -731.74 +541 7 -845.98	9 -731.62 +864 9 -845.92	11 -731.55 +1049 11 -845.83
Pb ₄ O ₅ C ₉ Pb ₄ O ₅ C ₁ 2	(K) IIOT) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹) Spin Energy (A.U.) Energy	1 -731.95 0 1 -846.09 +48	3 -731.89 +171 3 -846.11 0	5 -731.83 +310 5 -846.05 +160	7 -731.74 +541 7 -845.98 +326	9 -731.62 +864 9 -845.92 +484	11 -731.55 +1049 11 -845.83 +723
Pb ₄ O ₅ C ₉ Pb ₄ O ₅ C ₁ 2	(K) HOT) Spin Energy (A.U.) Energy difference (kJ mol ⁻¹) Spin Energy (A.U.) Energy difference	1 -731.95 0 1 -846.09 +48	3 -731.89 +171 3 -846.11 0	5 -731.83 +310 5 -846.05 +160	7 -731.74 +541 7 -845.98 +326	9 -731.62 +864 9 -845.92 +484	11 -731.55 +1049 11 -845.83 +723

$Pb_4O_6C_3$	Spin	1	3	5	7	9	11
	Energy	-579.04	-578.95	-578.88	-578.77	-578.66	-578.52
	(A.U.)						
	Energy	0	+251	+438	+732	+1000	+1383
	difference						
	(kJ mol ⁻¹)						
$Pb_4O_6C_6$	Spin	1	3	5	7	9	11
	Energy	-693.07	-693.05	-692.94	-692.86	-692.76	-692.67
	(A.U.)						
	Energy	0	+71	+337	+563	+818	+1052
	difference						
	(kJ mol ⁻¹)						
$Pb_4O_6C_9$	Spin	1	3	5	7	9	11
	Energy	-807.18	-807.15	-807.09	-807.03	-806.94	-806.84
	(A.U.)						
	Energy	0	+71	+232	+393	+626	+874
	difference						
	(kJ mol ⁻¹)						
$Pb_4O_6C_1$	Spin	1	3	5	7	9	11
2							
	Energy	-921.33	-921.31	-921.25	-921.15	-921.07	-920.95
	(A.U.)						
	Energy	0	+39	+212	+451	+671	+997
	difference						
	(kJ mol ⁻¹)						
$Cu_5O_5C_3$	Spin	2	4	6	8	10	
	Energy	-1476.34	-1476.30	-1476.20	-1476.09	-1476.01	
	(A.U.)						
	Energy	0	+107	+368	+652	+864	
	difference						
	(kJ mol ⁻¹)						
$Cu_5O_5C_6$	Spin	2	4	6	8	10	
	Energy	-1590.50	-1590.47	-1590.41	-1590.30	-1590.14	
	(A.U.)						
	Energy	0	+94	+246	+532	+961	
	difference						
	(kJ mol ⁻¹)						

$Cu_5O_5C_9$	Spin	2	4	6	8	10
	Energy	-1704.60	-1704.57	-1704.48	-1704.38	-1704.28
	(A.U.)					
	Energy	0	+72	+327	+580	+802
	difference					
	(kJ mol ⁻¹)					
$Cu_5O_5C_1$	Spin	2	4	6	8	10
2						
	Energy	-1818.62	-1818.62	-1818.56	-1818.46	-1818.38
	(A.U.)					
	Energy	+2	0	+150	+405	+621
	difference					
	(kJ mol ⁻¹)					

Table S7. Energies for the structures $Pb_4O_{4-6}C_{12}$ and $Cu_5O_5C_{12}$ found within 250 kJ mol⁻¹ of the lowest energy structure. Energies shown for the singlet/triplet spin state for lead-based systems and doublet/quartet for copper-based. The most stable spin is highlighted in bold, and the energy difference given in brackets.

System	Structure	Energy	v (A.U.)	Energy difference from structure 1	
		Spin 1	Spin 3		(kJ mol ⁻¹)
$Pb_4O_4C_{12}$	1	-770.91	-770.88	0	ß
			(+82 kJ mol)		
	2	-770.88	-770.88	+82	
		(+6 kJ mol ⁻¹)			
	3	-770.87	-770.84 (+78 kJ mol ⁻¹)	+121	
	4	-770.86	-770.80 (+154 kJ mol ⁻ 1)	+142	The second
	5	-770.85	-770.84 (+32 kJ mol ⁻¹)	+172	

	6	-770.84	-770.81 (+87 kJ mol ⁻¹)	+195	
	7	-770.84	-770.83 (+25 kJ mol ⁻¹)	+199	
	8	-770.84	-770.83 (+15 kJ mol ⁻¹)	+204	
	9	-770.83	-770.81 (+65 kJ mol ⁻¹)	+218	
	10	-770.83	-770.78 (+117 kJ mol ⁻ ¹)	+230	
	11	-770.83	-770.82 (+21 kJ mol ⁻¹)	+233	
Pb ₄ O ₅ C ₁₂	1	-846.09 (+48 kJ mol ⁻¹)	-846.11	0	
	2	-846.09	-846.09 (+6 kJ mol ⁻¹)	+51	
	3	-846.00 (+151 kJ mol ⁻ 1)	-846.06	+130	

	4	-846.03 (+20 kJ mol ⁻¹)	-846.04	+180	
	5	-846.04	-846.02 (+35 kJ mol ⁻¹)	+182	
	6	-846.03	-846.01 (+46 kJ mol ⁻¹)	+214	
	7	-846.02	-846.00 (+57 kJ mol ⁻¹)	+216	de se
	8	-846.02	-846.00 (+51 kJ mol ⁻¹)	+218	a contraction of the second se
	9	-845.99 (+72 kJ mol ⁻¹)	-846.02	+236	and the second s
Pb ₄ O ₆ C ₁₂	1	-921.33	-921.26 (+193 kJ mol ⁻ ¹)	0	
	2	-921.33	-921.31 (+39 kJ mol ⁻¹)	+7	
	3	-921.29 (+59 kJ mol ⁻¹)	-921.31	+43	

4	-921.28	-921.27 (+36 kJ mol ⁻¹)	+119	
5	-921.27	-921.24 (+86 kJ mol ⁻¹)	+158	
6	-921.25	-921.21 (+102 kJ mol ⁻ 1)	+208	
7	-921.24	-921.22 (+53 kJ mol ⁻¹)	+231	
8	-921.24	-921.22 (+39 kJ mol ⁻¹)	+236	
9	-921.23	-921.22 (+51 kJ mol ⁻¹)	+247	

System	Structure	Energy (A.U.)		Energy dif	ference from structure 1
		Spin 2	Spin 4		(kJ mol ⁻¹)
$Cu_5O_5C_{12}$	1	-1818.62	-1818.62	0	
		(+2 kJ mol ⁻¹)			
	2	-1818.62	-1818.62 (+4 kJ mol ⁻¹)	+2	

	(+38 kJ mol ⁻¹)		
4	-1818.61	-1818.60 (+4 kJ mol ⁻¹)	+30
5	-1818.61	-1818.58 (+56 kJ mol ⁻¹)	+33
6	-1818.60	-1818.59 (+16 kJ mol ⁻¹)	+47
7	-1818.60	-1818.59 (+33 kJ mol ⁻¹)	+50
8	-1818.59	-1818.58 (+33 kJ mol ⁻¹)	+75
9	-1818.57	-1818.57 (+1 kJ mol ⁻¹)	+119
10	-1818.54 (+94 kJ mol ⁻¹)	-1818.57	+120
11	-1818.57	-1818.55 (+45 kJ mol ⁻¹)	+122

3

-1818.60

-1818.62

12	-1818.55 (+37 kJ mol ⁻¹)	-1818.57	+130	
13	-1818.57	-1818.55 (+44 kJ mol ⁻¹)	+133	
14	-1818.55 (+34 kJ mol ⁻¹)	-1818.57	+136	
15	-1818.56	-1818.54 (+67 kJ mol ⁻¹)	+149	
16	-1818.56	-1818.55 (+29 kJ mol ⁻¹)	+157	
17	-1818.56	-1818.53 (+70 kJ mol ⁻¹)	+162	
18	-1818.55	-1818.53 (+66 kJ mol ⁻¹)	+174	
19	-1818.55	-1818.54 (+31 kJ mol ⁻¹)	+184	•
20	-1818.55 (+1 kJ mol ⁻¹)	-1818.55	+187	
21	-1818.54 (+12 kJ mol ⁻¹)	-1818.55	+190	

\$

R

References

- 1 J. S. Ogden and M. J. Ricks, J. Chem. Phys, 1972, 56, 1658.
- 2 A. Popovič, A. Lesar, M. Guček and L. Bencze, *Rapid Commun. Mass Spectrom.*, 1997, **11**, 459–468.
- 3 G. V Chertihin and L. Andrews, J. Chem. Phys, 1996, 105, 2561.
- J. Drowart, R. Colin and G. Exsteen, *Trans. Faraday Soc.*, 1965, **61**, 1376–1383.
- 5 I. L. Christopher, A. A. L. Michalchuk, C. R. Pulham and C. A. Morrison, *Front. Chem.*, 2021, **9**, 1–13.