Supplementary Material

Mechanism research reveals the role of Fe_n (n = 2-5) supported C_2N as single-cluster catalysts (SCCs) for the non-oxidative propane dehydrogenation in the optimization of catalytic performance

Yu Zhang^a, Qin Chen^a and Hui Zhang^{a,*}

^a Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

^{*}Corresponding authors. *E-mail addresses:* huizhang@swpu.edu.cn (H. Zhang)

Table S1. Total Mulliken charge of Fe_n cluster supported on C_2N

Fig. S1 Optimized structures of pure Fe_n clusters, and the bond lengths (Å) of Fe-Fe bonds in each Fe_n cluster are also marked.

Fig. S2 Top and side views of optimized structures of (a) Fe_2 - C_2N , (b) Fe_3 - C_2N , (c) Fe_4 - C_2N (tetrahedron), (d) Fe_4 - C_2N (butterfly-like), (e) Fe_5 - C_2N (square pyramid), and (f) Fe_5 - C_2N (triangular bipyramid). The bond length between two adjacent Fe atoms is marked in red font.

Fig. S3 The top and side views of stable adsorption configurations of propane (left) and propylene (right) on (a)Fe₂-C₂N, (b)Fe₃-C₂N and (c)Fe₄-C₂N accordingly.

Fig. S4 Density of states (DOS) of propane adsorbed on (a) Fe_3 - C_2N and (b) Fe_4 - C_2N . The upper part of each image shows the orbitals of the free propane.

Fig. S5 Density of states (DOS) of propylene adsorbed on (a) Fe_3-C_2N and (b) Fe_4-C_2N . The upper part of each image shows the orbitals of the free propylene.

TS

FS

(a)

IS

Fig. S6 Optimized configurations of IS, TS, and FS on Fe₃-C₂N along the route I.

Fig. S7 Optimized configurations of IS, TS, and FS on Fe₄-C₂N along the route I.

 $TS \\ CH_3CH_2CH_3^* \rightarrow CH_3CHCH_3^* + H^*$

(b)

Fig. S8 Optimized configurations of IS, TS, and FS on Fe₂-C₂N along the route II.

Fig. S9 Optimized configurations of IS, TS, and FS on Fe₃-C₂N along the route II.

 $CH_3CHCH_2^{-n} + 2H^{-n} \rightarrow CH_3CCH_2^{-n} + 3H^{-n}$

Fig. S10 Optimized configurations of IS, TS, and FS on Fe₄-C₂N along the route II.

Fig. S11 Optimized configurations of IS, TS, and FS to form H_2 .