Low Lattice Thermal Conductivities and good thermoelectric performance of Hexagonal Antiperovskites X(Ba & Sr)₃BiN with Quartic Anharmonicity

Shuming Zeng,^{1, *} Xiang Yan,¹ Qian Shen,¹ Yusong Tu,¹ Hao Huang,^{2, †} and Geng Li^{3,4,‡}

¹College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
²Advanced Copper Industry College,
Jiangxi University of Science and Technology, Yingtan 335000, China
³School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University,
Tongyan Road 38, Tianjin 300350, China.
⁴National Supercomputer Center in Tianjin, Tianjin 300457, China.
(Dated: August 19, 2023)

 $^{^{\}ast}$ zengsm@yzu.edu.cn

 $^{^{\}dagger}$ huanghao
201116@sina.cn

 $^{^{\}ddagger}$ ligeng@nscc-tj.cn

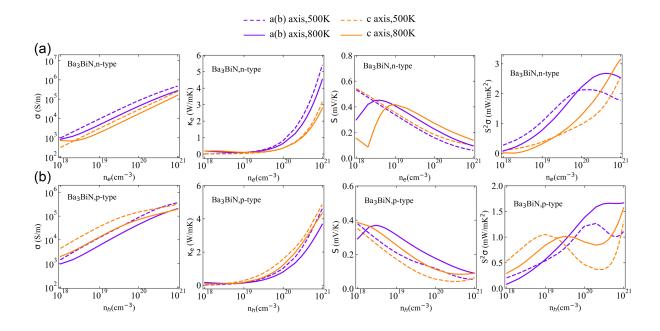


FIG. S1. The calculated electron conductivities σ , electronic thermal conductivity κ_e , Seebeck coefficient S, and power factor (PF), for n-type and p-type doping levels ranging from 1.0×10^{18} to 1.0×10^{21} cm⁻³, at 500 K and 800 K for Ba₃BiN.

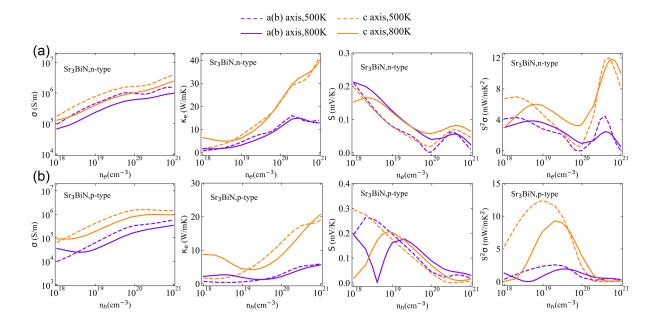


FIG. S2. The calculated electron conductivities σ , electronic thermal conductivity κ_e , Seebeck coefficient S, and power factor (*PF*), for n-type and p-type doping levels ranging from 1.0×10^{18} to 1.0×10^{21} cm⁻³, at 500 K and 800 K for Sr₃BiN.

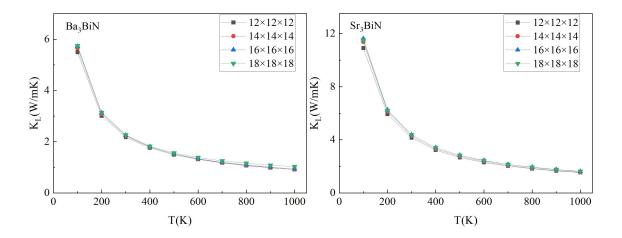


FIG. S3. The lattice thermal conductivities ($\kappa_{\rm L}$) of Ba₃BiN and Sr₃BiN calculated with different q-points at different temperatures using SCP+BTE method. It can be concluded that the $\kappa_{\rm L}$ values converge when q-point density is greater than $16 \times 16 \times 16$ at temperatures range from 100 to 1000K.