Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite

Maria Čebela^{1,2,3*}, Dejan Zagorac^{2,3*}, Igor Popov^{4,5*}, Filip Torić¹, Teodoro Klaser⁶, Željko Skoko¹, Damir Pajić^{1*}

¹ University of Zagreb, Faculty of Science, Department of Physics, Bijenička cesta 32, 10000 Zagreb, Croatia

² Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, Belgrade, Serbia

³ Center of Excellence "CextremeLab", Institute of Nuclear Sciences Vinča, University of Belgrade, National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, Belgrade, Serbia

⁴ Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia

⁵ Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

⁶ Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

Corresponding Authors: mcebela@vinca.rs, dzagorac@vinca.rs, popov@ipb.ac.rs, dpajic@phy.hr

Supporting Information

Supporting Tables

Table S1. Structural parameters of the samples doped with 2%, 5% and 10% Ho studied by powder X-ray diffraction and the data were refined by the Rietveld method.

	BHFO-2	BHFO-5	BHFO-10
Empirical formula	$Bi_{5.88}Ho_{0.12}Fe_6O_{12}$	$Bi_{5.70}Ho_{0.30}Fe_6O_{12}$	$Bi_{5.40}Ho_{0.60}Fe_6O_{12}$
Crystal system	Trigonal (hexagonal axes)	Trigonal (hexagonal axes)	Trigonal (hexagonal axes)
Space group	R3c	R3c	R3c
a/Å	5.6082(7)	5.5870(6)	5.5800(7)
$c/\text{\AA}$	13.9253(9)	13.8873(8)	13.8739(8)
Agreement paramete	rs		
R _{wp} /%	10.3	14.1	11.2
$R_p/\%$	8.1	11.9	9.8
R_{exp}^{1} /%	7.1	10.2	8.1
Refined atomic coordinates			
O (x)	0.438(3)	0.441(3)	0.445(3)
(y)	0.016(2)	0.015(2)	0.019(3)
(z)	0.948(5)	0.943(4)	0.951(5)
Bi/Ho (z)	0.223(1)	0.228(2)	0.226(1)

Modification	Space group	Tilt system	GII
β-Bi _{0.98} Ho _{0.02} FeO ₃	Pnma	a-b+a-	0.03816
<i>R</i> -Bi _{0.98} Ho _{0.02} FeO ₃	<i>R</i> -3 <i>c</i>	a⁻a⁻a⁻	0.04284
T_1 -Bi _{0.98} Ho _{0.02} FeO ₃	P4/mbm	a ⁰ a ⁰ c-	0.08938
T_2 -Bi _{0.98} Ho _{0.02} FeO ₃	I4/mcm	a ⁰ a ⁰ c-	0.08938
v-Bio 08H00 02FeO3	Pm-3m	$a^0a^0a^0$	0.72910

Table S2. Calculated values of the global instability index (GII) and tilt system of the most promising $Bi_{0.98}Ho_{0.02}FeO_3$ modifications using the bond valence (BVC) method.

Table S3. Structural data of the most promising $Bi_{0.98}Ho_{0.02}FeO_3$ perovskite modifications calculated using the BVC method.

Madification space group	Cell parameters(Å),	
wind Wyshoff nosition	unit-cell volume (Å ³) and	
and wyckon position	fractional coordinates	
β -Bi _{0.98} Ho _{0.02} FeO ₃	<i>a</i> =5.60, <i>b</i> =7.76, <i>c</i> =5.39	
<i>Pnma</i> (62)	V=234.55	
Bi 4c	0.5599 1/4 0.5207	
Но 4 <i>с</i>	0.5599 1/4 0.5207	
Fe 4 <i>b</i>	1/2 0 0	
O1 4 <i>c</i>	-0.0181 1/4 0.4013	
O2 8 <i>d</i>	0.2958 0.0494 0.7006	
<i>R</i> -Bi _{0.98} Ho _{0.02} FeO ₃	<i>a</i> =5.44, <i>c</i> =13.96	
$R\bar{3}c(167)$	V=357.56	
Bi 6a	0 0 1⁄4	
Но 6а	0 0 1⁄4	
Fe1 6 <i>b</i>	2/3 1/3 1/3	
O 18e	0.4091 0 1/4	
T_1 -Bi _{0.98} Ho _{0.02} FeO ₃	<i>a</i> =5.36, <i>c</i> =4.03	
<i>P4/mbm</i> (127)	V=115.73	
Bi 2c	0 1/2 1/2	
Но 2 <i>с</i>	0 1/2 1/2	
Fe 2 <i>a</i>	0 0 0	
O1 2 <i>b</i>	0 0 1/2	

O2 4g	0.1592 0.6592 0
T_2 -Bi _{0.98} Ho _{0.02} FeO ₃	<i>a</i> =5.36, <i>c</i> =8.06
<i>I4/mcm</i> (140)	<i>V</i> =231.45
Bi 4b	0 1/2 1/4
Ho 4 <i>b</i>	0 1/2 1/4
Fe 4 <i>c</i>	0 0 0
O1 4 <i>a</i>	0 0 1/4
O2 8h	0.3408 0.8408 0
γ-Bi _{0.98} Ho _{0.02} FeO ₃	<i>a</i> =4.03
<i>Pm</i> -3 <i>m</i> (221)	V=65.50
Bi 1b	1/2 1/2 1/2
Ho 1 <i>b</i>	1/2 1/2 1/2
Fe 1 <i>a</i>	0 0 0
O 3 <i>d</i>	0 0 1/2

Table S4. Calculated values of the global instability index (GII) and tilt system of the most promising $Bi_{0.95}Ho_{0.05}FeO_3$ modifications using the bond valence (BVC) method.

Modification	Space group	Tilt system	GII
β-Bi _{0.95} Ho _{0.05} FeO ₃	Pnma	a-b+a-	0.05815
<i>R</i> -Bi _{0.95} Ho _{0.05} FeO ₃	<i>R</i> -3 <i>c</i>	a-a-a-	0.06113
T_1 -Bi _{0.95} Ho _{0.05} FeO ₃	P4/mbm	$a^0a^0c^-$	0.09992
T_2 -Bi _{0.95} Ho _{0.05} FeO ₃	I4/mcm	a ⁰ a ⁰ c-	0.09992
γ-Bi _{0.95} Ho _{0.05} FeO ₃	Pm-3m	$a^0a^0a^0$	0.73225

Table S5. Structural data of the most promising $Bi_{0.95}Ho_{0.05}FeO_3$ perovskite modifications calculated using the BVC method.

Modification, space group and Wyckoff position	Cell parameters(Å), unit-cell volume (Å ³) and fractional coordinates
β -Bi _{0.95} Ho _{0.05} FeO ₃	<i>a</i> =5.59, <i>b</i> =7.76, <i>c</i> =5.39
<i>Pnma</i> (62)	<i>V</i> =234.33
Bi 4c	0.5604 1/4 0.5209
Но 4 <i>с</i>	0.5604 1/4 0.5209
Fe 4 <i>b</i>	1/2 0 0
O1 4 <i>c</i>	-0.0182 1/4 0.4008
O2 8 <i>d</i>	0.2960 0.0496 0.7004

<i>R</i> -Bi _{0.95} Ho _{0.05} FeO ₃	<i>a</i> =5.44, <i>c</i> =13.96
<i>R</i> -3 <i>c</i> (167)	V=357.36
Bi 6 <i>a</i>	0 0 1⁄4
Но 6 <i>а</i>	0 0 1/4
Fe1 6b	2/3 1/3 1/3
O 18e	0.5911 0 1/4
T_1 -Bi _{0.95} Ho _{0.05} FeO ₃	<i>a</i> =5.36, <i>c</i> =4.03
<i>P4/mbm</i> (127)	V=115.63
Bi 2c	0 1/2 1/2
Но 2 <i>с</i>	0 1/2 1/2
Fe 2 <i>a</i>	0 0 0
O1 2 <i>b</i>	0 0 1/2
O2 4g	0.1589 0.6589 0
T_2 -Bi _{0.95} Ho _{0.05} FeO ₃	<i>a</i> =5.36, <i>c</i> =8.06
<i>I4/mcm</i> (140)	V=231.25
Bi 4b	0 1/2 1/4
Ho 4 <i>b</i>	0 1/2 1/4
Fe 4 <i>c</i>	0 0 0
O1 4 <i>a</i>	0 0 1/4
O2 8h	0.3411 0.8411 0
γ-Bi _{0.95} Ho _{0.05} FeO ₃	<i>a</i> =4.03
<i>Pm</i> -3 <i>m</i> (221)	<i>V</i> =65.50
Bi 1b	1/2 1/2 1/2
Ho 1 <i>b</i>	1/2 1/2 1/2
Fe 1 <i>a</i>	0 0 0
O 3 <i>d</i>	0 0 1/2

Table S6. Calculated values of the global instability index (GII) and tilt system of the most promising $Bi_{0.9}Ho_{0.1}FeO_3$ modifications using the bond valence (BVC) method.

Modification	Space group	Tilt system	GII
β -Bi _{0.9} Ho _{0.1} FeO ₃	Pnma	a-b+a-	0.08023
R-Bi _{0.9} Ho _{0.1} FeO ₃	<i>R</i> -3 <i>c</i>	a⁻a⁻a⁻	0.08226
T_1 -Bi _{0.9} Ho _{0.1} FeO ₃	P4/mbm	a ⁰ a ⁰ c-	0.11480
T_2 -Bi _{0.9} Ho _{0.1} FeO ₃	I4/mcm	a ⁰ a ⁰ c-	0.11480
γ-Bi _{0.9} Ho _{0.1} FeO ₃	Pm-3m	$a^0a^0a^0$	0.73746

	Call naramators(Å)	
Modification, space group	$\begin{array}{c} \text{Cen parameters}(A), \\ \text{unit cell volume} \begin{pmatrix} & 3 \\ & \end{pmatrix} \text{ and} \end{array}$	
and Wyckoff position	unit-cell volume (A) and	
	Tractional coordinates	
β -B _{10.9} Ho _{0.1} FeO ₃	a=5.60, b=7.76, c=5.39	
<i>Pnma</i> (62)	V=233.93	
Bi 4 <i>c</i>	0.5613 1/4 0.5212	
Но 4 <i>с</i>	0.5613 1/4 0.5212	
Fe 4 <i>b</i>	1/2 0 0	
O1 4 <i>c</i>	-0.0185 1/4 0.4000	
O2 8 <i>d</i>	0.2963 0.0500 0.7000	
R-Bi _{0.9} Ho _{0.1} FeO ₃	<i>a</i> =5.43, <i>c</i> =13.96	
<i>R</i> -3 <i>c</i> (167)	V=357.05	
Bi 6 <i>a</i>	0 0 1/4	
Но 6 <i>а</i>	0 0 1/4	
Fe1 6b	2/3 1/3 1/3	
O 18e	0.5916 0 1/4	
T_1 -Bi _{0.9} Ho _{0.1} FeO ₃	<i>a</i> =5.35, <i>c</i> =4.03	
<i>P4/mbm</i> (127)	<i>V</i> =115.45	
Bi 2c	0 1/2 1/2	
Но 2 <i>с</i>	0 1/2 1/2	
Fe 2 <i>a</i>	0 0 0	
O1 2 <i>b</i>	0 0 1/2	
O2 4g	0.1583 0.6583 0	
T_2 -Bi _{0.9} Ho _{0.1} FeO ₃	<i>a</i> =5.35, <i>c</i> =8.06	
<i>I4/mcm</i> (140)	<i>V</i> =230.91	
Bi 4b	0 1/2 1/4	
Ho 4 <i>b</i>	0 1/2 1/4	
Fe 4 <i>c</i>	0 0 0	
O1 4 <i>a</i>	0 0 1/4	
O2 8h	0.3417 0.8417 0	
v-Bio Hoo FeO3	<i>a</i> =4.03	
Pm-3m (221)	V=65.50	
Bi 1 <i>b</i>	1/2 1/2 1/2	
Ho $1b$	1/2 1/2 1/2	
Fe $1a$		
O 3d	0 0 1/2	

Table S7. Structural data of the most promising $Bi_{0.9}Ho_{0.1}FeO_3$ perovskite modifications calculated using the BVC method.

Supporting Figures

Figure S1. Electro-magnetic properties of the half-metallic **alpha FM** structure: a) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; b) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states. Alpha FM has a relatively small gap of ~0.9 eV with an asymmetry of dispersion of valence (large dispersion) and conduction (small dispersion, flat band). Suitable for. e.g. application as a switch.

Figure S2. Electro-magnetic properties of the half-metallic **alpha AFM1** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S3. Electro-magnetic properties of the **alpha AFM2** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S4. Electro-magnetic properties of the half-metallic **beta FM** structure: a) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; b) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S5. Electro-magnetic properties of the **beta AFM1** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states. Beta AFM1 has a dispersive valence band while the conduction band has a relatively small dispersion. This finding together with the small band gap indicates that beta AFM1 is suitable for application as a switch.

Figure S6. Electro-magnetic properties of the **beta AFM2** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states. Both beta AFM1 and AFM2 structures appear as semiconductors with beta AFM1 direct band gap of 0.2-1.70 eV and dispersion

of 1.70 eV, while beta AFM2 type shows a direct band gap of 2 eV and dispersion of valence bands of only 0.15 eV (Table 2 and supporting Figures).

Figure S7. Electro-magnetic properties of the **gamma FM** structure: a) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; b) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S8. Electro-magnetic properties of the semimetallic **gamma AFM1** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S9. Electro-magnetic properties of the semimetallic **gamma AFM2** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S9. Electro-magnetic properties of the **R-type AFM1** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S10. Electro-magnetic properties of the **R-type AFM2** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S11. Electro-magnetic properties of the half-metallic **T1-type FM** structure: a) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; b) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S12. Electro-magnetic properties of the **T1-type AFM1** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S13. Electro-magnetic properties of the **T1-type AFM2** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S14. Electro-magnetic properties of the half-metallic **T2-type FM** structure: a) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; b) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states. T2 FM has a relatively large dispersion of the valence band and small dispersion of the conduction band, which is suitable for. e.g. application as a switch.

Figure S15. Electro-magnetic properties of the **T2-type AFM1** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.

Figure S16. Electro-magnetic properties of the **T2-type AFM2** structure: a) Calculation cell with spin texture marked by the blue arrows; b) Band structure along lines between high symmetry points. Black lines present spin-up and red line spin-down bands; c) Element-resolved density of states (DOS). Mirrored graphs correspond to spin-up and spin-down states.