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S1. Calculation and Experimental Methods.

Details of Computational Models

The basic model of Ti;C,Ty (T = -O- or -OH) is shown in Figure S1. The MXenes are 4 x 4
supercells with the ¢ axes set as 30.1582 A to ensure enough vacuum to avoid interactions

between atoms within two neighbouring periods.

There are many studies on the possible termination groups on MXene and the choice of the
slabs for this study is also essential.!** It was found that LiF—HCI etching led to mostly oxygen-
covered MXene (5 at% OH, 22 at% F, and 73 at% O).3 DFT results calculated by Meng et al.!
found that the —F termination group has the lowest adsorption energy of urea amongst —OH,
—0, and —F terminations, indicating the least favorable interactions. Therefore, —F termination
is not considered in our calculation. Even though there is only 5 at% of —OH, the DFT
calculations by Meng et al.! and Maleki et al.? indicated that this termination group has the
best adsorption ability for urea. Based on the X-ray absorption fine structure (XAFS) studies,
Bao et al.* found that Cu single atom catalysts were connected with the O terminations on
Ti;C,Tx matrix. They also did calculations with the basic structure of Cu single atom anchored
on O-atoms over Ti3C,Ty with OH terminations surrounding them. Thus, “OH and —O— are
terminations found to be the most promising and hence will be used for DFT calculations in
this work. As shown in Figure S1, there are four substitutional doping positions for single atom
(SA), e.g., Cu atom, on Ti3;C,(OH), and Ti3C,0,, which include replacing the exposed Ti (blue
rectangle) on the top Ti layer with Cu, replacing C (pink rectangle) with Cu and removing the
right above termination, replacing one termination (—OH or —O—) (green rectangle) with Cu
and anchoring a single atom (Cu) on terminations with —O—SA—O— structure (dashed yellow
rectangle). Next, it is important to determine the best doping position for the single atom Cu
on both Ti3;C,(OH), and Ti;C,0,, and subsequently this information can be extended to Co and
Ni single atom calculations. Two configurations for the adsorbate are considered: vertical and
parallel to the surface plane of MXene. Slabs after doping with SA are illustrated in Figure S2

and S5 in the sequence as described above.



Figure S1. The ball and stick model of Ti;C,(OH),: (a) side view; (b) top view; and the ball
and stick model of Ti;C,0,: (c) side view; (d) top view. The colourful rectangular areas
represent the suggestive positions to locate SA (not the actual ones in the following

calculations). Colour code: Ti, orange; C, grey; H, white; O, red.



Experiments for surface modification of Ti;C,Ty MXene

Materials

Lithium fluoride 300 mesh powder (LiF), Methanol HPLC > 99.9% HPLC, Hydrochloric acid
37% (HCI), Copper (II) Chloride dihydrate ACS reagent > 99.0% (CuCl,.2H,0), Cobalt (II)
Nitrate Hexahydrate (Co(NO;),.6H,O) ACS reagent grade > 98%, Nickel (II) Nitrate
Hexahydrate crystals (Ni(NOj3),.6H,0), Urea puriss. p.a., ACS reagent, reag. Ph. Eur., >99%,
3,4-Dihydroxy-L-phenylalanine > 98% (TLC), Sodium Borohydride granular (NaBH,) 99.99%
trace metal basis, were purchased from Sigma-Aldrich, Inc. 200 mesh Titanium Aluminum
Carbide MAX phase powder (Ti;AIC,) purchased from ANR Technologies. QuantiChrom™
urea assay kit (DIUR-100) was purchased from BioAssay Systems.

The reduction of Cu?>" by MXene can be accomplished without additional reducing agent as
reported* 3. However, to deposit Co and Ni ions on MXenes, a reducing agent such as sodium

borohydride (NaBHy) is required®.

Cu functionalization MXene

Method was adapted and modified from Bao et al’. DI water (250.0 mL) was added to a 500
mL round bottom flask containing MXene (250.0 mg). The mixture was sonicated for 10 min
followed by magnetic stirring at 900 rpm for 10 min. To a 10 mL glass vial, CuCl,.2H,0 (14.0
mg) was added along with DI water (14.0 mL) to obtain a solution concentration of 1 mg/dL.
CuCl, solution (6.7 or 13.4 mL) was then added into the mixture dropwise and left to stir for
30 min, followed by sonication for 1 h. The mixture was poured into four centrifuge tubes and
centrifuge at 10 000 rpm for 30 min. The supernatant was decanted, and the residue was
resuspended with fresh DI water. The washing step was repeated twice and dried in a vacuum

oven at 40 °C for 18 h. The product was obtained as a black solid.

Ni functionalization MXene

Method was adapted and modified from Chen et al®. DI water (250.0 mL) was added to a 500
mL round bottom flask containing MXene (250.0 mg). The mixture was sonicated for 10 min
followed by magnetic stirring at 900 rpm for 10 min. To a 10 mL glass vial, Ni(NO3),.6H,O
(24.0 mg) was added along with DI water (24.0 mL) to obtain a solution concentration of 1

mg/dL. Ni(NOs), solution (11.4 or 22.8 mL) was then added into the mixture dropwise and left



to stir for 30 min, followed by sonication for 1 h. NaBH, (75.6 mg) was added into a glass vial
20 of methanol:DI H,O (1:1) to obtain 0.1 M solution. The solution was added into the mixture
dropwise and left to stir at rtp for 2 h. The mixture was poured into four centrifuge tubes and
centrifuge at 10 000 rpm for 30 min. The supernatant was decanted, and the residue was
resuspended with fresh DI water. The washing step was repeated twice and dried in a vacuum

oven at 40 °C for 18 h. The product was obtained as a black solid.

Co functionalization MXene

Method was adapted and modified from Chen et al.® DI water (250.0 mL) was added to a 500
mL round bottom flask containing MXene (250.0 mg). The mixture was sonicated for 10 min
followed by magnetic stirring at 900 rpm for 10 min. To a 10 mL glass vial, Co(NOs3),.6H,O
(24.0 mg) was added along with DI water (24.0 mL) to obtain a solution concentration of 1
mg/dL. The Co(NO3), solution (11.4 or 22.8 mL) was then added into the mixture dropwise
and left to stir for 30 min, followed by sonication for 1 h. NaBH,4 (75.6 mg) was added into a
glass vial 20 of methanol:DI H,O (1:1) to obtain 0.1 M solution. The solution was added into
the mixture dropwise and left to stir at rtp for 2 h. The mixture was poured into four centrifuge
tubes and centrifuge at 10 000 rpm for 30 min. The supernatant was decanted, and the residue
was resuspended with fresh DI water. The washing step was repeated twice and dried in a

vacuum oven at 40 °C for 18 h. The product was obtained as a black solid.



S2. Models of Slabs and Urea Adsorption on these Slabs.

Figure S2. The ball and stick model of Cu doped on Ti;C,(OH), in the way of replacing the
exposed Ti on the top Ti layer (Ti;,Cu,C,(OH),: top view (a) and side view (b)), replacing C
together with removing the right above termination (Ti3C,.4<Cu,(OH),: top view (c¢) and side
view (d)), replacing one termination (-OH) (Ti3C,(OH),,Cuy: top view (e) and side view (f))
and anchoring single atom on the top of terminations with -O-SA-O- structure (Ti3C,(OH),Cuy:

top view (g) and side view (h)).
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Figure S3. The local charge density difference (CDD) analysis between absorbed urea in
parallel orientation on Ti3C,0,, Ti3C,(OH),, or Cu SA-Ti;C,(OH); slabs (Isovalue = 0.001).
The yellow part of iso-surface means the accumulation of electrons and the teal part of iso-
surface means the depletion of electrons. Color code: Cu, deep blue; Ti, light blue; H, white;

N, grey; O, red;C, brown.
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Figure S4. The ball and stick model for urea adsorption on various Cu doped Ti;C,(OH); slabs:
(a) perpendicular and (b) parallel configurations of urea on Ti;_ Cu,C,(OH),; (¢) perpendicular
and (d) parallel configurations of urea on Ti;C, Cu, (OH),; () perpendicular and (f) parallel
configurations of urea on Ti;C,(OH),.,Cuy; and (g & h) perpendicular configuration of urea on
Ti3C,(OH),Cuy. The initial adsorption configuration of urea in (h) is parallel. However, it

becomes vertical form after optimization.
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Figure S5. The ball and stick model of Cu doped on TizC,0; in the way of replacing the
exposed Ti on the top Ti layer (Ti3,Cu,C,0;: top view (a) and side view (b)), replacing C
together with removing the right above termination (Ti;C, Cu,O,: top view (c) and side view
(d)), replacing one termination (-OH) (Ti3C,0,4Cuy: top view (e) and side view (f)) and
anchoring single atom on the top of terminations with -O-SA-O- structure (Ti;C,0,Cuy: top

view (g) and side view (h)).



Figure S6. The ball and stick model of urea adsorption on Cu doped Ti3C,0;: (a) perpendicular
and (b) parallel configurations of urea on Ti; Cu,C,0,; (c) perpendicular and (d) parallel
configurations of urea on Ti;C,,Cu,O;; (e) perpendicular and (f) parallel configurations of
urea on Ti;C,0,,Cuy; and (g) perpendicular and (h) parallel configurations of urea on

Ti3C202CU.
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Figure S7. The density of states (DOS) spectra of metal doped Ti;C,0,: Ti;C,0,Cu,
Ti3C202CO, Ti3C202Ni, and purc Ti3C202.



S83. Characterizations of XRD and XPS
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Figure S8. XRD spectra of MAX phase, pristine MXene, and various 3d transition metal

functionalized MXenes.
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Figure S10. XPS spectra of Cu 39.3 (a) wide, (b) C 1s, (¢) O 1s, (d) Ti 2p and (e) Cu 2p.!%-12
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Figure S11. XPS spectra of Cu 78.6 (a) wide, (b) C 1s, (¢) O 1s, (d) Ti 2p and (e) Cu 2p. 1012
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