Supporting information

Prediction of planar B_xP Monolayer with inherent metallicity and its potential as an anode material for Na and K-Ion Batteries: A First-Principles Study

Fang Liu^b, Xianfei Chen^{a,b*}, Yi Huang^{a*}, Chaozhu Shu^{a,b}, Na Li^c, Beibei Xiao^d, Lianli Wang^e

^a State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

^b College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

^c College of Energy resources, state key laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

^d School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

e School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

Figure S1. The energy evolution of (a) B_5P and (b) B_6P during the AIMD simulations at 300 K, as well as the energy variation of (c) B_5P and (d) B_6P simulated at 600 K. The energy of the initial configuration at 0 ps was set to be zero. The inset gives the configuration at the end of the simulation.

^{*} Corresponding author. Email: <u>chenxianfei2014@cdut.edu.cn; huangyi@cdut.cn</u>

Site	B ₅ P		B ₆ P	
	Na	K	Na	K
B1	-1.40 (H1)	-1.83 (H1)	-1.37 (H2)	-1.94 (H1)
B2	-1.38 (H1)	-1.57 (H1)	-1.39 (H2)	-1.90 (H2)
B3	-1.08 (H2)	-1.82 (H1)	-1.50 (H1)	-1.98 (H1)
B4	-1.37 (H1)	-1.83 (H1)	-1.47 (H1)	-1.94 (H1)
B5	-1.37 (H1)	-1.57 (H1)	-1.39 (H2)	-1.89 (H2)
B6	-1.14 (H1)	-1.62 (H1)	-1.39 (H2)	-1.89 (H2)
B7	-1.39 (H2)	-1.81 (H2)	-1.48 (H1)	-1.94 (H1)
B8	-1.25 (H1)	-1.55 (H1)	-1.52 (H1)	-1.95 (H1)
В9			-1.43 (H1)	-1.90 (H1)
B10			-1.53 (H1)	-1.98 (H1)
H1	-1.07 (H1)	-1.84 (H1)	-1.49 (H1)	-1.96 (H1)
H2	-1.14 (H2)	-1.78 (H2)	-1.40 (H2)	-1.90 (H2)
H3	-1.24 (H1)	-1.82 (H1)	-1.41 (H2)	-1.91 (T1)
H4	-1.08 (H1)	-1.80 (H1)	-1.50 (H1)	-1.97 (H1)
Н5			-1.49 (H2)	-1.98 (H1)
T1	-1.39 (H1)	-1.81 (H1)	-1.49 (H1)	-1.97 (H1)
T2	-1.39 (H1)	-1.56 (H1)	-1.35 (H2)	-1.87 (H2)
Т3	-1.38 (H1)	-1.84 (H1)	-1.49 (H1)	-1.66 (T3)
T4	-1.25 (H2)	1.56 (H2)	-1.50 (H1)	-1.93 (H1)
Т5	-1.14 (H1)	-1.53 (H1)	-1.51 (H1)	-1.97 (H1)
Т6	-1.27 (H2)	-1.79 (H2)	-1.40 (H2)	-1.89 (H2)
T7			-1.50 (H1)	-1.97 (H1)

Table S1 The calculated adsorption energies (E_{ad} in eV) for all considered adsorption sites of Na/K ion. The final adsorption sites of the Na/K ions after geometric optimization are shown in parentheses.