Electronic Supplementary Material (ESI)

Supporting Information

Molecular nitrogen induced structure evolution of single transition

metal atom supported by B/N co-doped graphene for enhanced

nitrogen electroreduction performance

Zhiqiang Bai, ^{a, b} Jian Wang, *f Xiaomeng Peng, ^f Yufang Liu, *a, ^c and Wenhua Zhang *d, e

^{a.} School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China. E-mail: yf-liu@htu.edu.cn

^{b.} School of Cable Engineering, Henan Institute of Technology, Xinxiang, Henan, 453000, China

^{c.} Institute of Physics, Henan Academy of Sciences, Zhengzhou, Henan, 450000, China

^{d.} Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail: whhzhang@ustc.edu.cn

e. Laboratory for Chemical Technology, Ghent University, Technologiepark-Zwijnaarde 125, B-9052 Ghent, Belgium

^{f.} Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China. E-mail: wangj86@mail.ustc.edu.cn

Table S1 The formation energies (eV) of B_2N_2/G , $B_2N_2/G-1$, $B_2N_2/G-2$ and N_3B_2/G .

Defect	B_2N_2/G	$B_2N_2/G-1$	$B_2N_2/G-2$	N ₃ B ₂ /G
Formation energy	-0.73	-0.51	-0.35	-0.83

*The formation energies of B_2N_2/G , $B_2N_2/G-1$ and $B_2N_2/G-2$ are calculated according to $E_{form-1} = E_{B2N2/G} + 4E_C - (E_{Gv-2C} + 2E_B + 2E_N)$, where $E_{B2N2/G}$, E_{Gv-2C} , E_C , E_B and E_N are the energies of B(N)-codoped graphene, divacancy graphene, atomic C, B and N, respectively. While the formation energies of N_3B_2/G is calculated according to $E_{form-2} = E_{N3B2/G} + 5E_C - (E_{Gv-1C} + 2E_B + 3E_N)$, where $E_{N3B2/G}$ and E_{Gv-1C} are the energies of the N_3B_2/G structure and monovacancy graphene, respectively.

TM		E _b (eV)	
I IVI	$TM-B_2N_2/G$ in the work	$TM-B_2N_2/G-1$	$TM-B_2N_2/G-2$
Sc	-7.93	-5.05	-4.61
V	-7.04	-4.09	-5.04
Cr	-5.37	-3.68	-3.10
Mn	-5.38	-4.01	-3.99
Fe	-6.17	-4.73	-4.99
Со	-6.51	-5.29	-5.39
Ni	-6.70	-5.75	-5.64
Cu	-5.29	-4.19	-2.87
Zn	-3.53	-2.69	-0.71
Y	-7.79	-6.85	-4.38
Zr	-9.03	-8.34	-6.01
Nb	-8.46	-7.28	-6.76
Mo	-6.31	-5.00	-5.10
Тс	-7.22	-6.54	-5.94
Ru	-8.70	-8.12	-7.48
Rh	-6.85	-6.50	-6.45
Pd	-3.01	-2.82	-2.54
Ag	-2.97	-2.15	-1.47
Hf	-8.73	-6.61	-6.21
Та	-11.14	-9.79	-9.65
W	-7.49	-6.39	-6.69
Re	-7.48	-6.90	-6.32
Os	-7.99	-7.49	-7.05
Ir	-7.70	-7.27	-7.38
Pt	-6.68	-6.11	-6.43
Au	-3.23	-3.17	-2.59

Table S2 The binding energies (E_b , eV) of TM and three substrates, including B_2N_2/G selected in the works, $B_2N_2/G-1$, $B_2N_2/G-2$.

тм	Δ <i>G</i> *н	$\Delta G^* N_{2-end-on}$	$\Delta G^* N_{2-side-on}$	$\Delta G^* N_{2-side-on-1}$	$\Delta G^* N_{2-side-on-2}$
Mn	-0.76	-0.40	0.11	0.02	-0.02
Со	-0.79	-0.32	/	0.99	0.22
Ni	-0.82	-0.26	/	1.33	0.38
Zn	1.17	/	/	1.88	1.61
Cu	-0.14	0.18	/	/	0.95
Y	-1.25	-1.02	-0.87	-1.19	-1.06
Тс	-0.62	-0.56	0.27	-0.17	0.93
Ru	-0.66	-0.30	1.33	-0.29	1.28
Rh	-1.27	-0.09	1.51	-0.86	1.60
Hf	-1.18	-0.98	-0.80	-0.82	-0.61
Re	-1.07	-0.76	0.77	-0.97	0.90
Os	-0.90	-0.43	1.79	-0.57	1.46
Ir	-1.38	-0.22	1.76	1.62	/
Pt	-1.22	0.12	1.28	/	2.04

Table S3 Adsorption free energies (ΔG , eV) of atom hydrogen and molecular N₂ by end-on, sideon, side-on-1 and side-on-2 modes on fourteen TM-B₂N₂/G systems, which preferentially trap H atom. Here the "/" means that the corresponding optimized atomic structures are not obtained.

тм	Δ <i>G</i> *н	$\Delta G^* N_{2-end-on}$	$\Delta G^* N_{2-side-on}$	$\Delta G^* N_{2-side-on-1}$	$\Delta G^* N_{2-side-on-2}$
Sc	-0.07	-1.05	-0.38	-1.37	-1.26
Ті	-0.42	-0.86	-0.44	-1.84	-1.49
v	-0.59	-0.64	-0.27	-1.15	-0.51
Cr	-0.17	-0.26	-0.17	-0.79	-0.06
Fe	0.20	-0.35	0.74	-0.51	0.24
Zr	-0.98	-1.68	-0.48	-2.95	-2.72
Nb	-1.09	-1.39	-0.76	-2.12	-1.18
Мо	-0.44	-0.53	-0.41	-1.06	-0.09
Та	-1.19	-1.56	-1.16	-2.54	-1.63
w	-1.03	-1.16	-1.35	-3.09	-0.59

Table S4 Adsorption free energies (ΔG , eV) of atomic hydrogen and molecular N₂ by end-on, sideon, side-on-1 and side-on-2 modes on remaining ten TM-B₂N₂/G systems, which preferentially trap N₂ molecule.

	*N*NH	N^*NH_2	$N*NH_3$	*NH*NH ₃
S.c.	-0.05	-1.29	-0.94	1.56
30	*N*NH	*NH*NH		
	-0.05	0.51		
	*N*NH	N^*NH_2	*N*NH₃	*NH*NH₃
т:	-1.08	-1.51	-0.32	1.29
11	*N*NH	*NH*NH		
	-1.08	0.49		
	*N*NH	$N*NH_2$	*N*NH ₃	*NH*NH ₃
	-1.91	-1.04	-0.51	1.08
V	*N*NH	*NH*NH		
	-1.91	0.79		
	*N*NH	*N*NH ₂	*N*NH ₃	*NH*NH ₃
	-2.31	-1.15	-0.42	1.23
Cr	*N*NH	*NH*NH		
	-2.31	0.72		
	*N*NH	*N*NH ₂	*N*NH₃	*NH*NH₃
- Fe -	-1.17	-0.72	-0.33	0.99
	*N*NH	*NH*NH		
	-1.17	0.81		
	*N*NH	*N*NH ₂	*N*NH₃	*NH*NH₃
_	-0.47	-1.33	0.13	1.15
Zr	*N*NH	*NH*NH		
	-0.47	0.61		
	*N*NH	*N*NH ₂	*N*NH₃	*NH*NH₃
	-1.34	-0.89	0.22	1.36
Nb	*N*NH	*NH*NH		
	-1.34	0.60		
	*N*NH	*N*NH ₂	*N*NH ₃	*NH*NH ₃
	-0.87	-0.63	-0.14	1.05
Мо	*N*NH	*NH*NH		
	-0.87	0.55		
	*N*NH	*N*NH ₂	*N*NH₃	*NH*NH₃
	-1.41	-0.44	0.08	1.54
Та	*N*NH	*NH*NH		
	-1.41	0.59		
	*N*NH	*N*NH ₂	*N*NH ₃	*NH*NH ₃
	-0.60	-0.13	-0.15	1.80
W	*N*NH	*NH*NH		
	-0.60	0.74		

Table S5 Hydrogenation free energies (ΔG , eV) of adsorbed side-on-1 N₂ on TM-B₂N₂/G.

ТМ	Sc	Ti	V	Cr	Fe	Zr	Nb	Мо	Та	W
G*nh₃	-1.55	-2.09	-1.89	-1.49	-1.41	-1.75	-1.83	-1.61	-2.07	-1.74

Table S6 Adsorption free energies (G^*NH_3 , eV) of the first formed *NH_3 on N-TM-B₂N₂/G.

Table S7 The comparison of binding energies (E_b , eV) of TM single atoms supported by B_2N_2/G and N_3B_2/G substrates.

ТМ	Sc	Ti	V	Cr	Fe	Zr	Nb	Мо	Та	W
TM-B ₂ N ₂ /G	-7.93	-7.91	-7.04	-5.37	-6.17	-9.03	-8.46	-6.31	-11.14	-7.49
TM-N ₃ B ₂ /G	-8.99	-8.64	-7.83	-6.20	-6.19	-9.37	-8.83	-6.59	-11.46	-7.80

Table S8 The adsorption free energies (eV) of the 1st, 2nd, 3rd and even 4th N₂ molecule on TM-N₃B₂/G, accompanying with the corresponding free energies of competitive hydrogen adsorption. Here the "/" means that the corresponding optimized atomic structures are not obtained.

ТМ	Sc	Ti	v	Cr	Fe	Zr	Nb	Мо	Та	w
Reactants	$*N_{2-end-on}$	$*N_{2\text{-end-on}}$	$*N_{2\text{-end-on}}$	$*N_{2\text{-end-on}}$	$*N_{2\text{-end-on}}$	*Н	$*2N_{2-end-on}$	$*2N_{2-end-on}$	$*3N_{2\text{-end-on}}$	$*3N_{2-end-on}$
∆G*н	0.55	-0.01	-0.34	-0.30	-0.48	-1.31	-0.79	-0.50	-1.26	-0.88
$\Delta G^* N_{2-end-on}$	-0.16	-1.01	-0.73	-0.40	-0.90	-1.03	-1.20	-0.64	-1.43	-1.00
$\Delta G^* N_{2-side-on}$	-0.02	-0.81	-0.42	-0.12	-0.63	-1.19	-1.05	-0.38	-1.28	-0.67
$\Delta G^* N_{2-end-on}^* H$	0.68	0.54	0.45	0.38	0.48	/	0.34	0.08	0.02	0.24
$\Delta G^{*2N_{2-end-on}}$	0.13	0.14	0.10	0.05	0.07		-0.20	-0.65	-0.06	-0.65
$\Delta G^* N_{2-end-on}^* N_{2-side-on}$	/	0.53	0.31	0.44	0.60		0.20	0.06	0.22	-0.31
$\Delta G^{*2N_{2-end-on}}^{*H}$							0.59	0.63	0.07	0.08
$\Delta G^{*3N_{2-end-on}}$							0.30	0.16	-0.01	-0.18
$\Delta G^{*2N_{2-end-on}*N_{2-side-on}}$							0.62	0.36	0.25	0.05
$\Delta G^{*3N_{2-end-on}}^{*H}$									0.40	0.58
$\Delta G^{*4N_{2-end-on}}$									0.43	0.73

Table S9 Hydrogenation free energies (ΔG_{*NNH}) of the 1st, 2nd, and 3rd adsorbed end-on N₂ molecule to *NNH on W(Nb, Ta, Mo)-N₃B₂/G, and their charge states (Q_{N_2} , e), bond lengths (L_{N-N} , Å) of N-N bond and distances (D_{TM-N} , Å) between TM single atom and near-end N atom of adsorbed N₂ molecules.

ТМ	Number	$\Delta G_{*_{\rm NNH}}/{\rm eV}$	Q _{N₂} /e	L _{N-N} /Å	D _{TM-N} /Å	
	N ₂ -1	0.56	0.305	1.138	2.117	2 3 1
W	N ₂ -2	0.27	0.415	1.142	2.039	
	N ₂ -3	0.27	0.415	1.142	2.039	
N IL	N ₂ -1	0.77	0.412	1.140	2.143	1 2
ND	N ₂ -2	0.77	0.412	1.140	2.143	
	N ₂ -1	0.73	0.317	1.135	2.249	3
Та	N ₂ -2	0.52	0.376	1.140	2.139	
	N ₂ -3	0.52	0.376	1.140	2.139	
	N ₂ -1	0.74	0.363	1.139	2.058	1 2
Мо	N ₂ -2	0.74	0.363	1.139	2.058	

Table S10 Hydrogenation free energies (ΔG , eV) of the 3rd adsorbed end-on N₂ molecule along alternating and distal pathways on W-N₃B₂/G in the presence of other two adsorbed N₂ molecules. Where * represent 2N₂-W-N₃B₂/G.

Alternating —	*NNH	*NHNH	*NHNH ₂	*NH ₂ NH ₂	*NH ₂	*NH ₃
	0.27	0.72	-0.54	-0.02	-1.09	-0.39
Distal –	*NNH	*NNH ₂	*N	*NH	*NH ₂	*NH₃
	0.27	-0.37	0.06	-0.51	-0.11	-0.39

Table S11 Free energies (ΔG , eV) of competitive H adsorption along energy-favorable distal pathway on W-N₃B₂/G in the presence of other two end-on adsorbed N₂ molecules and N_xH_y intermediates.

Distal pathway –	*N2	*NNH	*NNH ₂	*N	*NH	*NH ₂	$*NH_3$
	-0.18	0.27	-0.37	0.06	-0.51	-0.11	-0.39
H adsorption -	*Н	*N ₂ *H	*NNH*H	*NNH ₂ *H	*N*H	*NH*H	*NH ₂ *H
	-0.10	0.58	0.68	0.51	0.87	0.17	0.36

Reactants	TM	Configuration	W
	∆G•⊧/eV	B0-60-60-60	-1.03
	∆ <i>G</i> ∗ _{№2-end-on} /eV		-1.16
	∆G _{*N2-side-on} /eV	10-60-60	-1.35
Clean W-B2N2/G	$\Delta G_{N_{2-side-on-1}}/eV$		-3.09
	$\Delta G_{N_{2-side-on-2}}/eV$		-0.59
	∆G∗ _{H₂O} /eV		-1.17
	Δ <i>G</i> ∗⊬/eV		-0.88
Clean W-N-B-/G	$\Delta G_{N_{2-end-on}}/eV$		-1.00
	$\Delta G_{N_{2-side-on}}/eV$	000000	-0.67
	∆ <i>G</i> •н.₀/еV	000000	-0.92
	ΔG∗ _H /eV		0.24
$N_{2-end-on}$ -W- N_3B_2/G	$\Delta G_{N_{2-end-on}}/eV$		-0.65
	$\Delta G_{N_2-side-on}/eV$		-0.41

Table S12 The adsorption free energies (ΔG , eV) of *H, *H₂O, *N₂ on clean W-B₂N₂/G and reconstructed W-N₃B₂/G in the presence of no any reactant, one end-on N₂ molecule and two end-on N₂ molecules, respectively.

	Δ <i>G</i> ∗ _{H₂} ₀/eV	 -0.35
*2N _{2-end-on} -W-N ₃ B ₂ /G	∆G•⊦/eV	 0.08
	∆G _{*N2-end-on} /eV	 -0.18
	Δ <i>G</i> ∗ _{H₂} o/eV	0.13

Alternating -	*NNH	*NHNH	*NHNH ₂	$*NH_2NH_2$	*NH ₂	*NH ₃
	0.34	-0.78	-0.17	1.04	-1.70	-0.15
Distal –	*NNH	*NNH ₂	*N	*NH	*NH ₂	*NH ₃
	0.34	-0.84	-0.04	-0.60	-0.13	-0.15

Table S13 Hydrogenation free energies (ΔG , eV) along alternating and distal pathways on W-N₃B₂/G with only one end-on N₂ molecules. Where * represent W-N₃B₂/G.

ТМ	W-N _{3-pyridine} /G	W-N _{3-pyrrolic} /G
Reactants	*3N _{2-end-on}	*3N _{2-end-on}
∆ <i>G</i> ∗ _H /eV	-0.54	-0.47
$\Delta G_{N_{2-end-on}}/eV$	-0.74	-0.63
$\Delta G_{N_2-side-on}/eV$	-0.61	-0.58
$\Delta G_{N_{2-end-on}}/eV$	-0.19	-0.21
$\Delta G_{*_{2N_{2}-end-on}}/eV$	-0.46	-0.33
$\Delta G_{*2N_{2-end-on}*H}/eV$	0.02	0.26
$\Delta G_{*_{3N_{2-end-on}}}/eV$	-0.09	-0.15
$\Delta G_{*_{3N_2-end-on}*H}/eV$	0.55	0.59
$\Delta G_{*_{4N_{2}-end-on}}/eV$	0.21	0.44
$\Delta G_{*_{2N_{2}-end-on}*_{NNH}}/eV$	0.36	0.34

Table S14 Adsorption free energies of atomic H and N_2 molecules on W-N_{3-pyridine}/G and W-N_{3-pyrrolic}/G during the adsorption saturation.

Table S15 The adsorption free energies of N₂ molecule (ΔG_{*N2} , eV), the formation free energies of (ΔG_{*NNH} , eV), the charge states (Q_{*N_2} , e) of adsorbed N₂ molecule, the bond lengths (L_{W-N} , Å) of between W single atom and N atom of adsorbed N₂ molecule, and the bond lengths (L_{N-N} , Å) of adsorbed N₂ molecule on W-N₃B₂/G, W-N_{3-pyridine}/G and W-N_{3-pyrrolic}/G.

Catalyst	$\Delta G^* N_2$	ΔG_{*NNH}	Q_{N_2}	L _{W-N}	L _{N-N}
W-N ₃ B ₂ /G	-0.18	0.27	0.427	2.034	1.142
W-N _{3-pyrrolic} /G	-0.15	0.34	0.414	2.054	1.140
W-N _{3-pyridine} /G	-0.09	0.36	0.410	2.059	1.139

Fig. S1 Three possible arrangements of B and N dopants at B(N)-dual-doped graphene, including B_2N_2/G selected in this work (a), $B_2N_2/G-1$ (b) and $B_2N_2/G-2$ (c). Where the gray, blue, dark red, and green balls represent C, N, B and TM atoms, respectively.

Fig. S2 The computed energy barriers for the pattern evolution of nitrogen adsorption from $*N_{2-end-on}$ (Fig. 2(a)) into novel $*N_{2-side-on-1}$ (Fig. 2(c)) on Sc(Ti, V, Cr, Fe, Zr, Nb, Mo, Ta)-B₂N₂/G, accompanying with the optimized configurations of transition state (TS). Where the gray, blue, dark red, white and green balls represent C, N, B, H and TM atoms, respectively.

Fig. S3 Hydrogenation free energies of adsorbed side-on-1 N_2 molecule on TM-B₂N₂/G.

Fig. S4 Free energy diagram of hydrogenation toward ammonia of the third adsorbed end-on N_2 molecule on W-N₃B₂/G along alternating pathway in the presence of other two end-on N_2 molecules, accompanying with the optimized intermediates. Where * represents $2N_2$ -W-N₃B₂/G, and the gray, blue, dark red, white and green balls represent C, N, B, H and W atoms, respectively.

Fig. S5 The configurations of competitive H adsorption on W-N₃B₂/G along distal pathway in the presence of other two adsorbed end-on N₂ molecules and N_xH_y intermediates. Where * represents $2N_2$ -W-N₃B₂/G. The gray, blue, dark red, white and green balls represent C, N, B, H and W atoms, respectively.

Fig. S6 (a) The molecule dynamic (MD) simulations for variation of total energy and temperature of W-N₃B₂/G at 400 K lasting 10 ps with each step of 1 fs, in which the Nosé-Hoover method is employed with controlling temperature. (b) Atomic configurations of W-N₃B₂/G at 2 ps, 4 ps, 6 ps, 8 ps and 10 ps. Where the gray, blue, dark red and green balls represent C, N, B and W atoms, respectively.

Fig. S7 Hydrogenation free energies of N₂ molecule along alternating and distal pathways on W-N₃B₂/G with only one adsorbed end-on N₂ molecule, accompanying with adsorption free energies of H atom in the presence of no any species and only one end-on *N₂. Where * represent W-N₃B₂/G. The gray, blue, dark red, white and green balls represent C, N, B, H and TM atoms, respectively.

Fig. S8 Differential charge density on W-N₃B₂/G in the presence of one and three adsorbed end-on N₂ molecules, respectively. Where the isosurface levels are set to 0.002 e/Å³. Yellow and cyan represent the accumulation and depletion of electrons, respectively.

Fig. S9 Ammonia desorption on W-N₃B₂/G in the presence of no any adsorbate and three adsorbed end-on N₂ molecules, respectively. Where * represent the clean W-N₃B₂/G.

Fig. S10 Hydrogenation free energies of the $3^{rd} N_2$ molecule along alternating and distal pathways on (a) W-N_{3-pyridine}/G and (b) W-N_{3-pyrrolic}/G in the presence of other two adsorbed end-on *N₂.

Fig. S11 Hydrogenation free energy changes of adsorbed end-on $*N_2$ along alternating and distal pathways on (a) V-B₂N₂/G and (b) Fe-B₂N₂/G, accompanying with competitive H adsorption in the presence of one end-on $*N_2$. (c) Atomic configurations of $*N_xH_y$ intermediates. Where * represents V(Fe)-B₂N₂/G, and the gray, blue, dark red, white, and green balls represent C, N, B, H and V(Fe) atoms, respectively.