Supplementary Information

$Electrocatalytic \ N_2 \ Reduction \ Activity \ of \ Core-Shell \ Iron \ Nanoalloy \ Catalysts$

- A Density Functional Theory (DFT) Study

Arunendu Das,[†] Sandeep Das,[†] and Biswarup Pathak^{*,†}

†Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India

*Email: <u>biswarup@iiti.ac.in</u>

Systems	Cohesive energy (eV)	Formation energy (eV)	CSIE (eV)	Average bo	Magnetic	
				Fe-Fe in shell	Fe(shell)-M(core)	(µ _B /atom)
Co@Fe	-4.25	1.20	-0.80	2.407	2.359	2.66
Ni@Fe	-4.08	1.25	-0.62	2.402	2.394	2.42
Cu@Fe	-3.74	1.33	-0.48	2.397	2.436	2.23
Fe ₆₅	-4.20	1.19	-0.65	2.407	2.398	2.79

Table S1. Calculated values of cohesive and formation energy, core-shell interaction energy (CSIE), average Fe-Fe and Fe-M bond length in Å and magnetic moment (μ_B /atom) for all clusters considered.

Figure S1. Magnetic moment (μ_B /atom) plotted against average Fe-Fe bond distance (Å) for all clusters considered.

Figure S2. Possible adsorption sites (lb, t, h, b, sb) over (110) facet of Fe₆₅ and M@Fe clusters for adsorbed species. Adsorbed $*N_2$ with side on $[*N_2$ (lb)] and end-on fashion $[*N_2$ (t)], adsorbed *N, $*NH_2$ and $*NH_2$ at hollow (h), bridge (b) and short-bridge (sb) sites, adsorbed $*NNH_2$ at top (t) and short-bridge (sb) sites, respectively.

Figure S3. Bond distances at short-bridge (sb) active sites on (a) Fe₆₅ NC and (b) Cu@Fe NC.

Figure S4. Possible elementary mechanisms of N_2 reduction to NH_3 include dissociative and associative(distal and alternating) mechanism.¹⁻³

Figure S5. Reaction free energy diagram for the dissociative mechanism without applied bias (U=0 V).⁴

Table S2. ΔG_{max} values with PDS, working potential (U_{work}) following dissociative and associative pathway for all the considered clusters and reported catalysts.⁴

Pathway	Systems	PDS	Δ G _{max} (eV)	Working potential $U_{work} = [-\Delta G_{max}/e \text{ in } V]$
Dissociative	Co@Fe	*NH + (H ⁺ + e^{-}) \rightarrow *NH ₂	0.33	-0.33
	Ni@Fe	*N_*NH ₂ + (H ⁺ + e ⁻) \rightarrow *N + NH ₃ (g)	1.25	-1.25
	Cu@Fe	*N_*NH ₂ + (H ⁺ + e ⁻) \rightarrow *N + NH ₃ (g)	0.34	-0.34
	Fe ₆₅	*NH ₂ + (H ⁺ + e ⁻) \rightarrow *NH ₃	0.53	-0.53
	Fe(110) ⁴	*N_*NH ₂ + (H ⁺ + e ⁻) \rightarrow *N + NH ₃ (g)	0.51	-0.51
	Fe ₈₅ -NC ⁴	*NH ₂ *NH ₂ + (H ⁺ + e ⁻) \rightarrow *NH ₂ + NH ₃	0.45	-0.45
Distal Associative	Co@Fe	*NH + (H ⁺ + e ⁻) \rightarrow *NH ₂	0.33	-0.33
	Ni@Fe	$*N_2 + (H^+ + e^-) \rightarrow *N_2H$	0.94	-0.94
	Cu@Fe	*NH + (H ⁺ + e ⁻) \rightarrow *NH ₂	0.27	-0.27
	Fe ₆₅	*NNH + (H ⁺ + e ⁻) \rightarrow *NNH ₂	1.06	-1.06
	Fe(110) ⁴	*NH + (H ⁺ + e ⁻) \rightarrow *NH ₂	0.50	-0.50
	Fe ₈₅ -NC ⁴	$*N_2 + (H^+ + e^-) \rightarrow *N_2H$	0.42	-0.42

Figure S6. Working potential (V) for M@Fe clusters, reported Fe₈₅NC and pristine Fe(110) following dissociative and associative pathway.⁴

Table S3. Calculation details associated with the reaction free energy change (ΔG) of $*N_2 \rightarrow *NNH$ for M@Fe clusters.

Systems	$\Delta G_{*N2 \rightarrow *NNH} (eV)$
Co@Fe	0.22
Ni@Fe	0.95
Cu@Fe	0.14

Figure S7. Activity $[U_{work} \text{ in } V]$ plotted against compressive strain (%) for all the considered clusters. The shortest Fe-Fe bond distance in reported pristine Fe(110) is 2.47Å.⁴

Figure S8. Charge depletion on Fe shell atoms obtained from Bader analysis for M@Fe clusters.

Table S4. Calculated values of average d-band center of outer shell Fe atoms for all the considered cluster.⁵

Systems	d-band center (&Fe)
Co@Fe	-1.29
Ni@Fe	-1.26
Cu@Fe	-1.09
Fe ₆₅	-1.43

Figure S9. HER free energy diagram for all the considered catalysts.^{6,7}

Systems	$\Delta G_{*_{N2}} (eV)$	∆G _{*H} (eV)	Exchange	Log (i ₀ /Acm ⁻²)	Overpotential (η in V)	
			density (i ₀)		NRR	HER
Co@Fe	-0.03	-0.43	5.07×10^{-08}	-7.29	0.20	0.43
Ni@Fe	-0.92	-1.28	1.92 × 10 ⁻²²	-21.71	0.81	1.28
Cu@Fe	-0.18	-0.54	6.90×10^{-10}	-9.16	0.14	0.54
Fe ₆₅	-0.14	-0.51	2.22×10^{-09}	-8.65	0.40	0.51

Table S5. Calculation details associated with the reaction free energy change (ΔG) of *N₂ and *H, exchange current density (i₀), NRR/HER overpotential for M@Fe and Fe₆₅ NCs.

According to the computational hydrogen electrode (CHE) model, the η value can be determined by the equation as follows,

 $\boldsymbol{\eta}_{\text{NRR}} = U_{eq} - U_{work} (V)$

 $= -0.13 - U_{work} (V)$

where, U_{eq} is the equilibrium potential of NRR (-0.13 V for $N_2 + 6H^+ + 6e^- \rightarrow 2NH_3$)

Figure S10. (a) Cu@Fe NC and (b) reported Fe(110) surface in defected form.⁴

References

- (1) G. Ertl, *Catal. Rev.*, 1980, **21**, 201–223.
- (2) L. C. Seefeldt, B. M. Hoffman and D. R. Dean, Annu. Rev. Biochem., 2009, 78, 701–722.
- (3) M. J. Dilworth and R. R. Eady, Biochem. J., 1991, 277, 465–468.
- (4) A. Das, A. S. Nair, S. C. Mandal and B. Pathak, ACS Appl. Nano Mater., 2021, 4, 7758–7770.
- (5) J. K. Nørskov, F. Abild-Pedersena, F. Studta and T. Bligaard, *Proc. Natl. Acad. Sci.*, 2011, 108, 937–943.
- (6) Y. Abghoui and E. Skulason, J. Phys. Chem. C, 2017, 121, 6141-6151.
- (7) A. S. Nair, R. Ahuja and B. Pathak, Nanoscale Adv., 2020, 2, 2410-2421.