Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting information for

Solar driven CO₂ hydrogenation to HCOOH on $(TiO_2)_n$ (n = 1-6) clusters

Jiaqi Tian,^a Lei Hou,^a Weizhi Xia,^a Zi Wang,^a Yusong Tu,^a

Wei Pei,*a Si Zhou,^b Jijun Zhao^c

^aCollege of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.

^bSchool of Physics, South China Normal University, Guangzhou 510631, China ^cKey Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

*Corresponding author. E-mail: pwei@yzu.edu.cn

Table S1. Key geometrical parameters of $(\text{TiO}_2)_n$ (n = 1 - 6) clusters including point group symmetry (sym.), average bond length $(d_{\text{Ti-O}})$, and the bond angle between Ti atoms and terminated O atoms ($\alpha_{<\text{Ti-O-Ti}>}$) calculated by VASP and Gaussian 09 program.

austom	sym.		$d_{ m Ti-O}(m \AA)$		$\alpha_{< Ti-O-Ti>}(^{\circ})$	
system	Gaussian 09	VASP	Gaussian 09	VASP	Gaussian 09	VASP
$(TiO_2)_1$	C_{2v}	C_{2v}	1.66	1.65	110.30	110.30
$(TiO_2)_2$	C_{2h}	C_{2h}	1.65	1.65	112.62	112.63
$(TiO_2)_3$	Cs	C_s	1.64	1.66	120.61	119.41
(TiO ₂) ₄	C_{2v}	C_{2v}	1.64	1.65	119.21	119.21
$(TiO_2)_5$	Cs	C_s	1.64	1.66	121.86	120.98
$(TiO_2)_6$	C ₂	C ₂	1.64	1.65	114.27	114.56

	VASP		Gaussian 09		
	PBE	HSE06	PBE	HSE06	
$(TiO_2)_1$	2.07	3.64	2.26	3.78	
$(TiO_2)_2$	2.89	4.79	3.12	4.84	
$(TiO_2)_3$	1.58	3.32	1.83	3.56	
$(TiO_2)_4$	2.95	4.87	2.78	4.92	
$(TiO_2)_5$	2.67	4.52	2.72	4.63	
$(TiO_2)_6$	2.48	4.36	2.50	4.48	

Table S2. The energy gap between HOMO and LUMO of $(TiO_2)_n$ (n = 1 - 6) clusters calculated by VASP and Gaussian 09 program based on PBE and HSE06 functional.

Me	ethod	$(TiO_2)_1$	$(TiO_2)_2$	$(TiO_2)_3$	(TiO ₂) ₄	(TiO ₂) ₅	$(TiO_2)_6$
	PBE	-0.54	-0.23	0.18	0.21	0.47	0.86
	PBE-D2	-0.60	-0.34	-0.08	-0.02	0.25	0.65
	PBE-D3	-0.68	-0.36	-0.10	0.03	0.33	0.65
VASP	HSE06	-0.52	-0.22	0.18	0.23	0.45	0.82
	HSE06-D2	-0.58	-0.32	-0.10	-0.05	0.23	0.58
	HSE06-D3	-0.68	-0.34	-0.11	0.05	0.36	0.62
	PBE	-0.48	-0.25	0.20	0.24	0.52	0.93
Gaussian	PBE-D3	-0.62	-0.34	-0.06	0.03	0.23	0.54
	HSE06	-0.50	-0.22	0.21	0.26	0.54	0.93

Table S3. Gibbs free energy of CO₂ molecule on $(TiO_2)_n$ (n = 1 - 6) clusters calculated by VASP and Gaussian 09 program.

(Unit: eV)

Species	ZPE (eV)	TS (eV)	ZPE-TS(eV)
H ₂	0.29	0.41	-0.12
H_2O	0.60	0.59	0.01
СО	0.14	0.62	-0.48
CO_2	0.31	0.67	-0.45
НСООН	0.92	1.02	-0.10
CH ₂ O	0.72	0.68	0.04
CH ₃ OH	1.39	0.79	0.60
CH ₄	1.20	0.58	0.61

Table S4. Zero-point energy (ZPE) and entropic correction (*TS*) at T =298.15 K for the molecules of H₂, H₂O, CO, CO₂, HCOOH, CH₂O, CH₃OH, and CH₄.

o) elusters.			
Species	ZPE (eV)	TS (eV)	ZPE–TS (eV)
*CO ₂	0.31	0.14	0.15
*OOCH	0.58	0.22	0.36
*COOH	0.63	0.12	0.51
*CO	0.25	0.10	0.15
*HCOOH	0.89	0.25	0.64
*CHO	0.51	0.17	0.34
*CH ₂ O	0.79	0.15	0.64
*CH ₂ OH	1.13	0.28	0.85
*CH ₂	0.72	0.16	0.58
*CH3	0.98	0.14	0.84

Table S5. Computational ZPE and *TS* at T =298.15 K for intermediate species involved in the CO₂ hydrogenation reaction on (TiO₂)₄ cluster, as a representative of (TiO₂)_n (n = 1–6) clusters.

Fig. S1. The atomic configuration of a H_2 molecule on $(TiO_2)_n$ clusters. The minimum distance between H_2 and $(TiO_2)_n$ and corresponding Gibbs free energy of H_2 adsorption was shown.

Fig. S2. The free energy profiles of CO_2 hydrogenation reaction on $(TiO_2)_1$ cluster and corresponding atomic structures of reaction intermediates. The Ti, O, C, and H atoms are shown in cyan, red, gray, and white colors, respectively.

Fig. S3. The free energy profiles of CO_2 hydrogenation reaction on $(TiO_2)_2$ cluster and corresponding atomic structures of reaction intermediates. The Ti, O, C, and H atoms are shown in cyan, red, gray, and white colors, respectively.

Fig. S4. The free energy profiles of CO_2 hydrogenation reaction on $(TiO_2)_3$ cluster and corresponding atomic structures of reaction intermediates. The Ti, O, C, and H atoms are shown in cyan, red, gray, and white colors, respectively.

Fig. S5. The free energy profiles of CO_2 hydrogenation reaction on $(TiO_2)_4$ cluster and corresponding atomic structures of reaction intermediates. The Ti, O, C, and H atoms are shown in cyan, red, gray, and white colors, respectively.

Fig. S6. The free energy profiles of CO_2 hydrogenation reaction on $(TiO_2)_5$ cluster and corresponding atomic structures of reaction intermediates. The Ti, O, C, and H atoms are shown in cyan, red, gray, and white colors, respectively.

Fig. S7. The free energy profiles of CO_2 hydrogenation reaction on $(TiO_2)_6$ cluster and corresponding atomic structures of reaction intermediates. The Ti, O, C, and H atoms are shown in cyan, red, gray, and white colors, respectively.