Electronic Supplementary Information (ESI) for DFT+U and Quantum Monte Carlo study of electronic and optical properties of $AgNiO_2$ and $AgNi_{1-x}Co_xO_2$ delafossite

Hyeondeok Shin,^{**a*} Panchapakesan Ganesh,^{*b*}, Paul R. C. Kent^{*c*}, Anouar Benali^{*a*}, Anand Bhattacharya^{*d*}, Ho Nyung Lee^{*e*}, Olle Heinonen^{d‡}, and Jaron T. Krogel^{*f*}

1 Geometry for $AgNi_{1-x}Co_xO_2$

Obtaining accurate geometry is important in order to accurately estimate the electronic properties of doped systems. Because detailed geometry information is not available for $AgNi_{1-x}Co_xO_2$, we compare two different geometries in order to select one to use. A first geometry was obtained from full relaxation using PBE+U with ultra-soft pseudopotentials, and a second one was pristine stoichiometric $AgNiO_2$ geometry with Ni1 atoms simply replaced with Co for $AgNi_{1-x}Co_xO_2$. We performed DMC total energy calculations on these two geometries in order to find the more stable structure with lower fixed-node DMC energy. DMC calculations were done with a 580 electrons supercell and the estimated DMC energy for the DFT-relaxed $AgNi_{1-x}Co_xO_2$ geometry and for the pure $AgNiO_2$ geometry are -9049.547(11) eV/f.u. and -9049.569(10) eV/f.u., respectively. It is interesting, and perhaps surprising, that the pure $AgNiO_2$ geometry has a lower fixed-node DMC energy, which implies that the $AgNiO_2$ structure is more stable than the PBE+U-relaxed $AgNi_{1-x}Co_xO_2$ structure. Therefore, it is necessary to develop and use other geometry optimization methods for the delafossites. That will be the subject of future work; for the present work, we decided to use the pure $AgNiO_2$ structure for $AgNi_{1-x}Co_xO_2$.

Fig. 1 DMC total energy of AgCoO₂ as function of Hubbard U in the PBE+U trial wavefunction..

^a Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA. Tel: 630-252-7933; E-mail: hshin@anl.gov

^b Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

^c Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

^d Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

^e Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

^f Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. Tel: 865-576-6204; E-mail: krogeljt@ornl.gov

[‡] Present address: Seagate Technology, Computer Ave. 7801, Bloomington, MN 55435, USA.

2 U scanning for $AgCoO_2$

The optimal value of U for a Co atom in $AgNi_{1-x}Co_xO_2$ was chosen by scanning value of U in 2H-AgCoO₂ structure. DMC calculation for scanning U was performed in 576 electrons cell within PBE+U trial wavefunction. As seen in Figure 1, the optimal value of U for a Co atom was obtain through a quartic fit to DMC total energies and were estimated to be 4.0(1) eV.

 $\label{eq:Fig.2} Fig. \ 2 \ Upper \ and \ lower \ Co-doped \ NiO_2 \ layers \ and \ total \ density \ of \ states \ for \ selected \ 8 \ phases \ of \ 96 \ atoms \ cell \ of \ AgNi_{0.66}Co_{0.33}O_2.$

Fig. 3 Upper and lower Co-doped NiO₂ layers and total density of states for selected 6 phases of 192 atoms cell of $AgNi_{0.66}Co_{0.33}O_2$.