Electronic Supplementary Information

Revisiting the Bonding Evolution Theory: A New Perspective on Ammonia Pyramidal Inversion and Bond Dissociations in Ethane and Borazane

Leandro Ayarde-Henríquez,*ab Cristian Guerra,*bcd Mario Duque-Noreña,be and Eduardo Chamorro*be

^aTrinity College Dublin, The University of Dublin. School of Physics, College Green Dublin 2, Ireland.

^bUniversidad Andrés Bello. Centro de Química Teórica y Computacional (CQT&C). Facultad de Ciencias Exactas. Santiago de Chile, Chile.

°Universidad Autónoma de Chile. Facultad de Ingeniería. Avenida Pedro de Valdivia 425, 7500912, Santiago de Chile, Chile.

^dUniversidad de Córdoba. Grupo de Química Computacional. Facultad de Ciencias Básicas. Carrera 6 No. 77-305, Montería-Córdoba, Colombia. ^eUniversidad Andrés Bello. Departamento de Ciencias Químicas. Facultad de Ciencias Exactas. Avenida República 275, 8370146, Santiago de Chile, Chile.

Correspondence to: <u>leandro.ayarde@tcd.ie</u> (L A-H) <u>c.guerramadera@unandresbello.edu</u> (CG) echamorro@unab.cl (EC)

Contents

1. Optimized Cartesian coordinates for minima and TS of the pyramidal inversion of ammonia at DFT levels 1
2. Optimized Cartesian coordinates for minima and TS of the pyramidal inversion of phosphine at DFT levels. 3
3. Optimized Cartesian coordinates for minima and TS of the pyramidal inversion of arsine at DFT levels 6
4. Optimized Cartesian coordinates for reactant and product of the ethane dissociation at CASSCF7
5. Optimized Cartesian coordinates for reactant and products of the ammonia borane dissociation at DFT levels
Table S1. Performance of DFT levels for the pyramidal inversion of ammonia at P = 1.00 atm 11
Table S2. Performance of DFT levels for the pyramidal inversion of phosphine at $P = 1.00$ atm 12
Table S3. Performance of DFT levels for the pyramidal inversion of arsine at $P = 1.00$ atm
Table S4. Performance of CASSCF and CASPT2 methods combined with the 6-31(d) basis set for the ethane dissociation at $P = 1.00$ atm
Table S5. Performance of DFT levels for the ammonia borane dissociation at P = 1.00 atm

1. Optimized Cartesian coordinates for minima and TS of the pyramidal inversion of ammonia at DFT levels

ωB97X-D/6-31G(d)

Minima

Н	0.00000000	0.93951400	-0.31816900
Н	-0.81361300	-0.46968000	-0.31838100

Н	0.81361300	-0.46968000	-0.31838100
N	0.00000000	-0.00001300	0.06938400

<u>TS</u>

Н	0.00000000	0.99973900	0.0000000
Н	-0.86579900	-0.49986900	0.00000000
Н	0.86579900	-0.49986900	0.00000000
Ν	0.00000000	0.00000000	0.00000000

ωB97X-D/6-31G(d,p)

<u>Minima</u>

Н	0.00000000	0.93820100	-0.31804900
Н	-0.81247600	-0.46902400	-0.31826100
Н	0.81247600	-0.46902300	-0.31826100
N	0.00000000	-0.00001300	0.06902300

<u>TS</u>

Н	0.00000000	0.99775300	0.00000000
Н	-0.86408000	-0.49887700	0.00000000
Н	0.86408000	-0.49887700	0.00000000
N	0.00000000	0.00000000	0.00000000

M06-2X/6-31G(d)

<u>Minima</u>

Н	0.00023000	0.93853200	-0.10127400
Н	-0.81269800	-0.46946000	-0.10127000
Н	0.81314900	-0.46945500	-0.09750800
N	-0.00068000	0.00038200	0.29161100

<u>TS</u>

Н	0.00000000	0.99997200	0.00000000
н	-0.86600100	-0.49998600	0.00000000

Н	0.86600100	-0.49998600	0.00000000
N	0.00000000	0.00000000	0.00000000

M06-2X/6-31G(d,p)

<u>Minima</u>

Н	0.00021800	0.93740700	-0.10072200
Н	-0.81173200	-0.46888700	-0.10071800
Н	0.81215900	-0.46888200	-0.09713700
N	-0.00064500	0.00036200	0.29013600

<u>TS</u>

Н	0.00000000	0.99825000	0.00000000
Н	-0.86449100	-0.49913200	0.00000000
Н	0.86449100	-0.49913200	0.00000000
N	0.00000000	0.00001500	0.00000000

2. Optimized Cartesian coordinates for minima and TS of the pyramidal inversion of phosphine at DFT levels

ωB97X-D/6-31G(d)

<u>Minima</u>

Н	0.00000000	1.19562400	-0.69484600
Н	-1.03575700	-0.59836200	-0.69391400
Н	1.03575700	-0.59836200	-0.69391400
Р	0.00000000	0.00004600	0.06840700

<u>TS</u>

н	0.00000000	1.38355500	0.00000000
Н	1.19819400	-0.69177800	0.00000000
Н	-1.19819400	-0.69177800	0.00000000
Р	0.00000000	0.00000000	0.00000000

ωB97X-D/6-31+G(df)

<u>Minima</u>

Н	-0.00000300	1.20133000	-0.69274800
Н	-1.04073000	-0.60121800	-0.69182200
Н	1.04073100	-0.60122200	-0.69182100
Р	0.00000100	0.00005700	0.06212400

<u>TS</u>

н	0.00000000	1.38142100	0.00000000
н	1.19634600	-0.69071000	0.00000000
н	-1.19634600	-0.69071000	0.00000000
Р	0.00000000	0.00000000	0.00000000

ωB97X-D/6-31+G(df,p)

<u>Minima</u>

Н	-0.00000100	1.19995200	-0.69339300
н	-1.03952400	-0.60053000	-0.69246600
н	1.03952400	-0.60053200	-0.69246600
Р	0.00000100	0.00005700	0.06405800

<u>TS</u>

н	0.00000000	1.38137900	0.00000000
н	1.19631000	-0.69069000	0.00000000
н	-1.19631000	-0.69069000	0.00000000
Р	0.00000000	0.00000000	0.00000000

M06-2X/6-31G(d)

<u>Minima</u>

Н	0.00000000	1.18986600	-0.69605600
н	-1.03035800	-0.59554500	-0.69520700
н	1.03035800	-0.59554600	-0.69520700
Р	0.00000000	0.00017100	0.07220400

0.00000000	1.37991900	0.00000000
1.19504500	-0.68995900	0.00000000
-1.19504500	-0.68995900	0.00000000
0.00000000	0.00000000	0.00000000
	0.00000000 1.19504500 -1.19504500 0.00000000	0.000000001.379919001.19504500-0.68995900-1.19504500-0.689959000.000000000.00000000

M06-2X/6-31+G(df)

<u>Minima</u>

Н	0.00000000	1.19589600	-0.69388200
Н	-1.03563000	-0.59853300	-0.69299600
Н	1.03563000	-0.59853300	-0.69299600
Р	0.00000000	0.00011700	0.06560700

<u>TS</u>

н	0.00000000	1.19589600	-0.69388200
н	-1.03563000	-0.59853300	-0.69299600
н	1.03563000	-0.59853300	-0.69299600
Р	0.00000000	0.00011700	0.06560700

M06-2X/6-31+G(df,p)

<u>Minima</u>

Н	0.00000000	1.19531000	-0.69427300
Н	-1.03512100	-0.59824200	-0.69339000
Н	1.03512100	-0.59824200	-0.69339000
Р	0.00000000	0.00012100	0.06678600

<u>TS</u>

н	0.00000000	1.37892600	0.00000000
н	1.19418500	-0.68946300	0.00000000
н	-1.19418500	-0.68946300	0.00000000
Р	0.00000000	0.00000000	0.00000000

3. Optimized Cartesian coordinates for minima and TS of the pyramidal inversion of arsine at DFT levels

ωB97X-D/6-31+G(df)

<u>Minima</u>

Н	-0.0000300	1.26769500	-0.82746500
Н	-1.09795900	-0.63376500	-0.82742500
Н	1.09796100	-0.63377000	-0.82742400
As	0.00000200	-0.00000800	0.02753200

<u>TS</u>

н	0.00000000	1.47339200	0.00000000
н	1.27599500	-0.73669600	0.00000000
н	-1.27599500	-0.73669600	0.00000000
As	0.00000000	0.00000000	0.00000000

ωB97X-D/6-31+G(df,p)

<u>Minima</u>

Н	0.00000000	1.24817100	-0.82186300
Н	-1.08105500	-0.62400200	-0.82181700
Н	1.08105500	-0.62400200	-0.82181700
As	0.00000000	-0.00001500	0.01071400

<u>TS</u>

Н	0.00000000	1.44901300	0.00000000
н	1.25488200	-0.72450600	0.00000000
н	-1.25488200	-0.72450600	0.00000000
As	0.00000000	0.00000000	0.00000000

M06-2X/6-31+G(df)

<u>Minima</u>

Н	0.00000000	1.27028900	-0.82683200
Н	-1.10017900	-0.63503900	-0.82675700

Н	1.10017900	-0.63503900	-0.82675700
As	0.00000000	-0.00005900	0.02556300

т	<u>`</u>
	<u> </u>
	0

Н	0.00000000	1.47843500	0.00000000
Н	1.28036200	-0.73921700	0.00000000
Н	-1.28036200	-0.73921700	0.00000000
As	0.00000000	0.00000000	0.00000000

M06-2X/6-31+G(df,p)

<u>Minima</u>

Н	0.00000000	1.25134700	-0.82111400
Н	-1.08357100	-0.62560000	-0.82108000
Н	1.08357100	-0.62559900	-0.82107900
As	0.00000000	0.00000300	0.00849000

<u>TS</u>

Н	0.00000000	1.45350800	0.00000000
Н	1.25877500	-0.72675400	0.00000000
Н	-1.25877500	-0.72675400	0.00000000
As	0.00000000	0.00000000	0.00000000

4. Optimized Cartesian coordinates for reactant and product of the ethane dissociation at CASSCF

CASSCF(6,6)/6-31G(d)

Reactant

- C -0.763558 -0.000026 -0.000246
- C 0.763558 0.000026 0.000246
- H -1.160710 0.964058 0.334571
- $H \quad -1.160155 \quad -0.771730 \quad 0.667832$
- H -1.160574 -0.192005 -1.002556

- H 1.160574 0.192005 1.002556
- H 1.160155 0.771730 -0.667832
- H 1.160710 -0.964058 -0.334571

Product

- C 7.538573 0.000040 0.000144
- C -7.538543 -0.000033 -0.000168
- H 7.555901 0.498551 -0.959589
- H 7.542983 -1.080503 0.048472
- H 7.538592 0.582131 0.911802
- H -7.540428 -0.216566 -1.059869
- H -7.553200 1.025889 0.342171
- H -7.544024 -0.809545 0.717157

5. Optimized Cartesian coordinates for reactant and products of the ammonia borane dissociation at DFT levels

ωB97X-D/6-31G(d)

Reactant

В	0.93053100	0.00000600	0.00000500
н	1.23920100	-0.52975500	-1.04837000
н	1.23922200	1.17280600	0.06544400
н	1.23927000	-0.64305200	0.98295400
N	-0.72814600	0.00000000	-0.00000200
н	-1.09101900	-0.94939400	-0.05349900
н	-1.09107700	0.42836200	0.84892800
н	-1.09100200	0.52103500	-0.79545200

<u>Ammonia</u>

Ν	-2.35474700	0.00126700	0.00064600
Н	-2.73871500	-0.93968500	-0.00857200
Н	-2.74461700	0.46158200	0.81858700

<u>Borane</u>

В	2.80475400	-0.00009400	-0.00054100
Н	2.80644400	-0.50869800	-1.08293500
Н	2.80634600	1.19158100	0.10029600
н	2.80151800	-0.68322400	0.98109100

ωB97X-D/6-31G(d,p)

Reactant

В	0.92836500	0.00000400	0.00000400
н	1.23800300	-0.52911300	-1.04706800
Н	1.23801700	1.17135700	0.06534900
Н	1.23807000	-0.64224100	0.98174700
N	-0.72898500	-0.0000300	-0.00000200
н	-1.08882300	-0.94871900	-0.05347800
н	-1.08887100	0.42804100	0.84833200
н	-1.08879500	0.52068100	-0.79487600

<u>Ammonia</u>

Ν	-2.35511000	0.00126600	0.00064600
н	-2.73860000	-0.93837200	-0.00855900
н	-2.74449300	0.46093600	0.81744400
н	-2.74385900	0.47661500	-0.80743400

<u>Borane</u>

В	2.80475900	-0.00009300	-0.00054100
н	2.80644100	-0.50824800	-1.08197500
н	2.80634300	1.19052600	0.10020700
н	2.80151900	-0.68261900	0.98022100

S9

M06-2X/6-31G(d)

Reactant

В	0.93387200	0.00001900	0.00001500
Н	1.23768200	-0.52757500	-1.04451000
Н	1.23777700	1.16836800	0.06536200
Н	1.23778100	-0.64080300	0.97914400
N	-0.72685200	0.00001900	0.00003500
Н	-1.09103700	-0.95018900	-0.05332100
Н	-1.09120100	0.42892700	0.84953600
н	-1.09104100	0.52124100	-0.79625400

<u>Ammonia</u>

Ν	-2.35177800	0.00128400	0.00065500
н	-2.73971000	-0.93888100	-0.00857800
н	-2.74560200	0.46118700	0.81788800
н	-2.74497200	0.47685600	-0.80786800

<u>Borane</u>

В	2.80476600	-0.00010800	-0.00050000
н	2.80643300	-0.50649500	-1.07834400
н	2.80633500	1.18653000	0.09980900
н	2.80152800	-0.68036100	0.97694700

M06-2X/6-31G(d,p)

Reactant

В	0.93148100	0.00002000	0.00001400
н	1.23617000	-0.52698900	-1.04349700
н	1.23627600	1.16719600	0.06536600
н	1.23627600	-0.64022000	0.97812700
Ν	-0.72809400	0.00002200	0.00003800
н	-1.08831100	-0.94961300	-0.05320600
н	-1.08849300	0.42874100	0.84897600

<u>Ammonia</u>

Ν	-2.35326700	0.00127800	0.00065500
н	-2.73921800	-0.93775200	-0.00856900
н	-2.74510300	0.46063700	0.81690800
н	-2.74447400	0.47628400	-0.80689800

<u>Borane</u>

В	2.80476700	-0.00010700	-0.00050100
н	2.80643100	-0.50609500	-1.07749000
н	2.80633400	1.18559100	0.09973000
н	2.80153000	-0.67982300	0.97617300

Table S1. Performance of DFT levels for the pyramidal inversion of ammonia at P = 1.00 atm.

Level	$\Delta H_{T=0}^{\ddagger}$ [kcalmol ⁻¹]	Absolute Error [kcalmol ⁻¹] ^a
ωB97X-D/6-31G(d)	4.93	0.33
ωB97X-D/6-31G(d,p)	4.48	0.78
M06-2X/6-31G(d)	5.43	0.17
M06-2X/6-31G(d,p)	4.81	0.45

 $a \Delta H_{exp}^{\ddagger}(T) = E_a - RT = 5.31 \text{ kcalmol}^{-1} \text{ at}$ 298 K (see M. F. Manning, J Chem Phys, 1935, **3**, 136–138).

 $\Delta H_{exp}^{\ddagger}(T) = E_a - RT = 5.21 \text{ kcalmol}^{-1}$ at 298 K (see C. C. Costain and G. B. B. M. Sutherland, *J Phys Chem*, 1952, **56**, 321–324). The absolute error was computed using the average of the experimental values.

Level	$\Delta H_{T=0}^{\ddagger}$ [kcalmol ⁻¹]	Absolute Error [kcalmol ⁻¹] ^a
ωB97X-D/6-31G(d)	33.80	10.05
ωB97X-D/6-31+G(df)	31.18	7.43
ωB97X-D/6-31+G(df,p)	31.11	7.36
M06-2X/6-31G(d)	34.68	10.93
M06-2X/6-31+G(df)	31.86	8.11
M06-2X/6-31+G(df,p)	31.80	8.05

Table S2. Performance of DFT levels for the pyramidal inversion of phosphine at P = 1.00 atm.

^a $\Delta H^{\ddagger}_{exp}(T) = E_a - RT = 30.99 \text{ kcalmol}^{-1}$ at 298 K (see R. E. Weston, , J Am Chem Soc, 1954, **76**, 2645–2648). $\Delta H^{\ddagger}_{exp}(T) = E_a - RT = 16.51 \text{ kcalmol}^{-1}$ at 298 K (see C. C. Costain and G. B. B. M. Sutherland, *J Phys Chem*, 1952, **56**, 321–324). The absolute error was computed using the average of the experimental values.

Table S3. Performance of DFT levels for the pyramidal inversion of arsine at P = 1.00 atm.

Level	$\Delta H^{\ddagger}_{T=0}$ [kcalmol ⁻¹]	Absolute Error [kcalmol ⁻¹] ^a
ωB97X-D/6-31+G(df)	39.33	7.82
ωB97X-D/6-31+G(df,p)	37.60	6.09
M06-2X/6-31+G(df)	36.76	5.25
M06-2X/6-31+G(df,p)	35.22	3.71

^a $\Delta H^{\ddagger}_{exp}(T) = E_a - RT = 31.51 \text{ kcalmol}^{-1}$ at 298 K (see C. C. Costain and G. B. B. M. Sutherland, *J Phys Chem*, 1952, **56**, 321–324).

Table S4. Performance of CASSCF and CASPT2 methods combined with the 6-31(d) basis set for the ethane dissociation at P = 1.00 atm.

Level	$\Delta H_{diss,0K}$ [kcalmol ⁻¹]	$\Delta H_{diss,298K}$ [kcalmol ⁻¹]	Absolute Error [kcalmol ⁻¹] ^a
CASSCF(6,6)	88.04	80.79	-
CASSCF(8,8)	77.47	66.61	-
CASPT2(6,6)	95.58	88.34	1.56
CASPT2(8,8)	92.64	81.75	8.15

 $a \Delta H_{diss}^0$ (exp) = 89.9 kcalmol⁻¹ at 298 K (see A. Haaland, Chem Int Ed Engl, 1989, 28, 992–1007). The absolute error was computed for CASPT2 only.

Table S5. Performance of DFT levels for the ammonia borane dissociation at P = 1.00 atm.

Level	$\Delta H_{diss,0K}$ [kcalmol ⁻¹]	$\Delta H_{diss,298K}$ [kcalmol ⁻¹]	Absolute Error [kcalmol ⁻¹] ^a
ωB97X-D/6-31G(d)	29.30	31.11	3.19
ωB97X-D/6-31G(d,p)	28.79	30.59	3.71
M06-2X/6-31G(d)	30.17	31.97	2.33
M06-2X/6-31G(d,p)	29.64	31.45	2.85

 $\Delta H_{diss}^{0}(exp) = 31.1 \text{ kcalmol}^{-1}$ at 298 K (see A. Haaland, Chem Int Ed Engl, 1989, 28, 992–1007).

 $\Delta H_{diss}^{0}(exp) = 37.5 \text{ kcalmol}^{-1}$ at 298 K (see L. V. Gurvich, I. V. Veyts and C. B. Alcock, *Thermodynamic Properties of Individual Substances*, 4th edn., 1994, Vol. 3.). The absolute error was computed for enthalpies at 298 K taking the average of experimental values.