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MATERIALS AND METHODS

Materials. PET plastics were collected from landfills and ground into particles
with a 40-60 mesh size. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) was purchased
from Shanghai Bide Pharmatech Technology Co. Ltd, China. nitric acid (HNO3),
formic acid (HCOOH), propionic acid (PA), pyruvic acid (CH3COCOOH), and acetic
acid (HOAc) were purchased from Nanjing Wanqing Chemical Glassware &
Instrument Co., Ltd., China. EG and BHET standard samples were purchased from
Shanghai Macklin Biochemical Technology Co., Ltd, China.

Synthesis of TBD protic ionic salts. First, a certain amount of TBD was dissolved
in a flask with distilled water under the protection of nitrogen, and then, an equimolar
amount of oxygenated organic acid (nitric acid, formic acid, propionic acid, pyruvic
acid or acetic acid) was added into the TBD aqueous solution and magnetically stirred
for 4 h. After this, the reaction product was evaporated with a rotary evaporator until
crystals precipitated. Finally, the crystals were transferred to a vacuum oven for further
drying at 70 °C for 12 h to obtain the target protic ionic salt, named HTBD-NO; HTBD-
HCOO, HTBD-CH;CH,COO, HTBD-CH;COCOO, and HTBD-OAc.

General procedure for PET glycolysis. For the catalytic experiments, a 25 mL
three-necked flask equipped with a mechanical stirrer was filled with 1.0 g of PET (W1)
and a certain amount of EG. The catalysts were added to the flask when the mixture
was heated to the target temperature. Degradation reactions were carried out in a
temperature range from 150 °C to 200 °C for 20—240 min under atmospheric pressure.

When the reaction was completed, 300 mL of distilled water was added to the reaction



solution. Unreacted PET particles were separated by filtration. The collected material
was dried at 80 oC for 4.0 h and weighed (W;). The volume of the filtrate was adjusted
to 1 L and the production of BHET was determined by high-performance liquid
chromatography (HPLC). The conversion of PET and the yield of BHET were

calculated by Eq. (1) and (2) as follows:
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where w is the initial weight of PET and w; is the weight of unreacted PET. ngygt
is the production of BHET; nj,iapet 1S the molecular weight of BHET by the original
PET mole number.

The reuse of protic ionic salt. After the main product was separated, the light-
yellow concentrated liquid was rotary evaporated again until no moisture remained, and
then, the material was dried in a vacuum oven for 12 h to obtain a dispersion containing
EG and the ionic salt, which was used as a solvent and a catalyst for the reusability
experiment. Apart from replenishing EG, the recovered solvent and catalyst were
directly utilized in the next cycle

Characterization. The morphologies of the initial PET and residual PET were
evaluated by environmental scanning electron microscopy (ESEM, FEI Quanta 250
FEG, USA) at an accelerating voltage of 2.5 kV. Thermal analysis of the main product
was performed with DSC at a heating rate of 10 °C/min from 10 °C to 250 °C by using

a DSC Q20 (TA Instruments, USA) under a nitrogen atmosphere. Thermal analysis of



the synthesized ionic slats was performed with TGA by heating the sample from 25 °C
to 600 °C at a rate of 10 °C/min. The contents of the degradation product were analyzed
with HPLC, equipped with a refractive index detector and a BET C18 column, under
an oven temperature of 30 °C. The mobile phase was a mixture of 50% methanol and
50% water, and the flow rate was 0.1 mL min-1. The structures of the synthesized protic
ionic salts were determined with an FT-IR spectrometer (Nicolet iS5, USA) by using
KBr as the blank in the range of 4000-400 cm™' and an NMR apparatus (Bruker
DRX500, Germany). The molecular weights of the initial PET and main product were
determined by gel permeation chromatography (GPC, Agilent PL-GPC 50, USA).

Computational details. All calculations were performed by the density functional
theory (DFT) method'- 2 with the ®B97XD functional® in the solution phase (ethylene
glycol, EG)* The solvation effect was considered with the solvation model based on
density (SMD)’. In the calculations, the 6-31++G** basis sets® were used for ethylene
glycol and hydrogen (H) atoms connected to nitrogen (N) in HTBD-anion catalysts. For
other atoms, the 6-31+G* basis sets®® were utilized. Vibrational frequency calculations
were performed for each structure to ensure whether it is a minimum (no imaginary
frequency) or a transition state (TS, only one imaginary frequency) on the potential
energy surfaces. To validate the connection between the reactant and product, the
intrinsic reaction coordinate (IRC) %! calculations were conducted for each transition
state. The Gibbs energy in solution was calculated at the experimental temperature
(463.15 K), where the translational entropy was corrected with the method developed

by Whitesides et al'2. All of these calculations were carried out with the Gaussian 16



program!3. The IGMH' (independent gradient model based on Hirshfeld partition)

analysis was carried out using Multiwfn!® 3.8 program package.
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Fig S1. IGMH analysis of (a) TS5, and (b) TS5 for glycolysis of PET mediated by
the HTBD-OAc ionic salt.
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Fig S2. Gibbs free energy profiles for the glycolysis of PET by EG mediated by the

HTBD-HCOO protic ionic salt.
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Fig S3. Gibbs free energy profiles for the glycolysis of PET by EG mediated by the
HTBD-CH;CH,COQ protic ionic salt.
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Fig S4. Gibbs free energy profiles for the glycolysis of PET by EG mediated by the

HTBD-CH;COCOO protic ionic salt.
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Fig S5. Gibbs free energy profiles for the glycolysis of PET by EG mediated by the

HTBD-NO; protic ionic salt.
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Fig S6. Optimized geometries of all species involved in the glycolysis of PET by EG
mediated by the HTBD-HCOO protic ionic salt. Distances are in angstrom. The Gibbs
energy changes are given in parentheses (kcal/mol).
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Fig S7. Optimized geometries of all species involved in the glycolysis of PET by EG
mediated by the HTBD-CH3;CH,COO protic ionic salt. Distances are in angstrom. The
Gibbs energy changes are given in parentheses (kcal/mol).
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Fig S8. Optimized geometries of all species involved in the glycolysis of PET by EG
mediated by the HTBD-CH;COCOQO protic ionic salt. Distances are in angstrom. The
Gibbs energy changes are given in parentheses (kcal/mol).
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Fig S9. Optimized geometries of all species involved in the glycolysis of PET by EG
mediated by the HTBD-NOj; protic ionic salt. Distances are in angstrom. The Gibbs
energy changes are given in parentheses (kcal/mol).
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Fig S10. IGMH analysis of (a) TS34 and (b) TS5, for glycolysis of PET mediated by
the HTBD-HCOO ionic salt.
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Fig S11. IGMH analysis of (a) TS34 and (b) TS5, for glycolysis of PET mediated by
the HTBD-CH;CH,COO ionic salt.
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Fig S12. IGMH analysis of (a) TS34 and (b) TS5, for glycolysis of PET mediated by
the HTBD-CH;COCOQO 1onic salt.
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Fig S13. IGMH analysis of (a) TS34 and (b) TS5, for glycolysis of PET mediated by
the HTBD-NOj 1onic salt.
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Fig S14 The formation of HTBD-OAc. Distances are in angstrom. The Gibbs energy
changes are given in parentheses (kcal/mol).
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Fig S15 The formation of HTBD-COQO. Distances are in angstrom. The Gibbs energy
changes are given in parentheses (kcal/mol).
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Fig S16 The formation of HTBD-CH3;CH,00. Distances are in angstrom. The Gibbs
energy changes are given in parentheses (kcal/mol).
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Fig S17 The formation of HTBD-CH;COCOQO. Distances are in angstrom. The Gibbs
energy changes are given in parentheses (kcal/mol).
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Fig S18 The formation of HTBD-NOs;. Distances are in angstrom. The Gibbs energy
changes are given in parentheses (kcal/mol).
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