Supplementary Information

Two-Dimensional AlB₄ and Al₂B₂: High-Performance Dirac Anodes for Sodium-

Ion Batteries

Ru-Feng Zou,^a Xiao-Juan Ye,^{b,*} Xiao-Hong Zheng,^c Ran Jia,^d Chun-Sheng Liu^{a,*}

^aCollege of Electronic and Optical Engineering, Nanjing University of Posts and

Telecommunications, Nanjing 210023, China

^bCollege of Integrated Circuit Science and Engineering, Nanjing University of Posts a

nd Telecommunications, Nanjing 210023, China

^cCollege of Information Science and Technology, Nanjing Forestry University, Nanjing

210037, China

^dInstitute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun

130023, China

*Email: yexj@njupt.edu.cn (X.-J.Y.).

*Email: csliu@njupt.edu.cn (C.-S.L.).

Fig. S1 Phonon spectra of (a) monolayer AlB₄ and (b) Al₂B₂.

Fig. S2 AIMD simulations at 400 K of (a) monolayer AlB₄ and (b) Al₂B₂. The insets represent top

and side views of the final snapshots.

Fig. S3 Top views and DOS of (a) AlB_4Na , (b) AlB_4Na_2 , (c) $AlB_4Na_{2.5}$, (d) Al_2B_2Na , and (e) $Al_2B_2Na_2$. The green and cyan balls represent Na atoms adsorbed on the first layer and the second

layer, respectively.

Number of Na atoms	Ediff-ads (eV) of AlB4	$E_{\text{diff-ads}}$ (eV) of Al ₂ B ₂
1	3.55	2.03
2	3.38	1.95
3	3.15	1.87
4	3.12	1.75
5	2.91	1.62
6	2.82	1.51
7	2.57	1.48
8	2.55	1.42
9	3.15	1.81
10	3.01	1.77
11	2.81	1.63
12	2.70	1.55
13	2.54	1.43
14	2.44	1.30
15	2.20	1.28
16	2.13	1.20
17	2.60	1.77
18	2.46	1.59
19	2.33	1.49
20	2.26	1.40
21	2.19	1.33
22	2.10	1.27
23	2.00	1.22
24	1.91	1.19
25	2.37	1.58

Table S1 The calculated differential adsorption energies of Na atoms adsorbed on AlB_4 and Al_2B_2

monolayers.

26	2.25	1.53
27	2.13	1.46
28	2.11	1.37
29	1.98	1.32
30	1.83	1.27
31	1.67	1.25
32	1.57	1.18
33	1.81	1.09
34	1.75	-
35	1.56	_
36	1.43	_
37	1.37	-
38	1.31	_
39	1.22	-
40	1.17	_
41	1.05	_