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1. Supporting Experimental Results  

 

 

Figure S1. Spectrum in 1.0 M NaOH deconvoluted into seven Gaussian bands. 

 

Figure S2. Spectrum in 16.0 M NaOH deconvoluted into seven Gaussian bands. 
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Figure S3. The areas of the five deconvoluted OH sub-bands of the OH stretching band 

of NaOH with molar concentration. The 0 M concentration points refer to the spectrum 

of pure water. 

 

 

Figure S4. Water uptake in QPAF-4 with RH. 
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Figure S5. Raman spectrum calibration curve. The relationship between λ and the area 

ratio AOH/Aaromatic (x) is given by λ=1.6148+0.0047297x8.4969. 
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Figure S6.The spectra of de-hydrated QPAF-4 membrane on silicon substrate at different 

temperatures. 

 

2. Density Functional Theory 

a. Methods 

A representative section of the QPAF-4 structure that included both hydrophobic and 

hydrophilic moieties was used for the density functional theory  DFT  calculations. The 

hydrophilic moiety included two tetraalkylammonium groups, each with an associated 

hydro ide anion, and 20 water molecules were randomly placed to surround these 

functional groups and provide a hydrogen-bonded network between them  Figure S6 . 

First, this structure was subjected to a molecular dynamics  MD  calculation in order to 

obtain a realistic arrangement of the water molecules. Then, two stages of geometry 

optimisation were carried out, first with medium quality and second with fine quality, as 

described below in more detail. The final optimised structure was then subjected to 

vibrational analysis of both OH- anions, the 20 water molecules, and representative parts 

of the ionomer itself. The vibrational frequencies of the various O-H contributions were 

finally used to generate a spectrum. 
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Figure S7. Final optimized structure of QPAF-4 fragment including both hydrophobic 

and hydrophilic moieties, the latter including two tetraalkylammonium cations, plus two 

OH- and 20 water molecules. Colour scheme: carbon (grey), hydrogen (white), fluorine 

(light blue), oxygen (red). 

The DMol3 DFT application was used as part of the BIOVIA Materials Studio, v. 2021 

 Dassault Systeme  platform 1,2. The initial ab initio MD calculation was carried out with 

the hardness-conserving semilocal pseudopotential  dspp  3 with the PBE functional 4. 

The simple Nosé-Hoover thermostat for 200 fs at 300 K was used 5,6. The final 

configuration of the MD calculation was then subjected to geometry optimisation, first 

with medium settings  2  10-5 Ha energy convergence, 4  10-3 Å gradient convergence, 

displacement convergence 5  10-3 Å, scf density convergence 1  10-5 Ha , and then with 

fine settings  1  10-5 Ha energy convergence, 2  10-3 Å gradient convergence, 

displacement convergence 5  10-3 Å, scf density convergence 1  10-6 Ha . Both were 

all-electron calculations and used the v. 4.4 basis file. The vibrational frequencies were 

also carried out with fine settings. To generate the spectrum, the individual bands were 

subjected to Gaussian broadening factors of 1 cm-1  minimal broadening  and 200 cm-1 

 realistic broadening . 

 

b. Results 

The calculated Raman spectrum contains some of the features of the e perimental 

spectrum but overemphasises the high wavenumber region. The main reasons for this are 

 a  all of the bands have been given equal intensity in the calculation, whereas it is well 

known that the intensity should decrease with increasing wavenumber of O-H stretching 
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as the degree of hydrogen bonding decreases; and  b  in the calculation, there would be a 

disproportionate number of free OH groups, i.e., those with essentially zero H-bonding, 

with resulting frequencies in the 3700-3800 cm-1 region. There are several predicted 

vibrations in the low-wavenumber region that are due to water OH groups that are H-

bonded to hydro ide o ygen. As e plained in the main te t, although these bands might 

be observed e perimentally, they are difficult to distinguish from interference features. 

 

Figure S8. Simulated Raman spectra with 1 cm-1 (orange) and 200 cm-1 (blue) levels of 

Gaussian broadening. 
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