Supplementary Material

Size-Tunable Energy Gap of Hydrogen-Terminated Biphenylene Segments

Yirui Lu, Lei Yan, Huixia Fu, Yuhui Song, Yifei Cao, Sen Li, Ruhai Du, Jinping Li, Zhengkun Fu, Zhenglong Zhang

1School of physics and information technology, Shaanxi Normal University, Shaanxi, Xi’an 710119, China
2Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, China
Fig. S1 Band structure and density of states (DOS) of one-dimensional (a) AC-BP and (b) ZZ-BP with the width of two benzene rings as well as (c) AC-BP with the width of five benzene rings. (d) DOS of two-dimensional BP sheet. The unit cells are inserted in each figure. The valence bands are plotted with black lines and the conduction bands are plotted in red. 500 k-points are used in the calculations.

Fig. S2 (a) Structure of unit cell of two-dimensional BP network. (b)-(e) Bond length variation of B1 and B2 for AC-BP and ZZ-BP with N = 3, 5, 7, 9, respectively.
Fig. S3 Energy gap of (a) \(N \times N \) and (b) \(N \times 10 \) BP structures (\(N = 3 \sim 10 \)).

Fig. S4 Electron density distribution at HOMO and LUMO state of \(N \times N \) BP structures with \(N = 3, 5, 7, 8 \) and 9. The isosurface value is 0.0005 e/Bohr\(^3\).

Fig. S5 (a) Relationship between the length and \(N_{H}/N_{C} \) and the energy gap for Armchair 2*N. (b) Relationship between the length and width and \(N_{H}/N_{C} \) for BP nano-segments.