Supplementary Information for "Velocity Map Imaging with No Spherical

Aberrations"
Yehuda Ben-Shabo ${ }^{1}$, Adeliya Kurbanov ${ }^{1}$, Claus Dieter Schröter ${ }^{2}$, Robert Moshammer ${ }^{2}$, Holger Kreckel ${ }^{2}$, Yoni Toker ${ }^{1}$
${ }^{1}$ Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
${ }^{2}$ Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, 69117 Heidelberg, Germany

I. FULL DERIVATIONS

A. Expression for time-of-flight

The time-of-flight of particles to the detectors is determined by plugging $z\left(t_{f}\right)=L$ into Eq. 4 from the main manuscript:

$$
\begin{equation*}
L=z\left(t_{t}\right)=\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right) \cosh \left(\sqrt{2} \omega_{\rho} t_{f}\right)+\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}} \sinh \left(\sqrt{2} \omega_{\rho} t_{f}\right)-\frac{U_{z}}{4 U_{\rho}} \tag{1}
\end{equation*}
$$

This equation is of the form:

$$
\begin{equation*}
C=A \cosh (x)+B \sinh (x) \tag{2}
\end{equation*}
$$

where:

$$
\begin{gather*}
A=z_{0}+\frac{U_{z}}{4 U_{\rho}} \tag{3}\\
B=\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}} \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
C=L+\frac{U_{z}}{4 U_{\rho}} \tag{5}
\end{equation*}
$$

If $|A|>|B|$ we can define:

$$
\begin{equation*}
A=\alpha \cosh (\beta), \quad B=\alpha \sinh (\beta) \tag{6}
\end{equation*}
$$

With

$$
\begin{equation*}
\alpha=\sqrt{A^{2}-B^{2}}=\sqrt{\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right)^{2}-\left(\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}}\right)^{2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\tanh ^{-1}\left(\frac{A}{B}\right)=\tanh ^{-1}\left(\frac{\sqrt{2} \omega_{\rho}}{v_{z}^{0}}\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right)\right) \tag{8}
\end{equation*}
$$

, so that

$$
\begin{equation*}
C=\alpha(\cosh (\beta) \cosh (x)+\sinh (\beta) \sinh (x)=\alpha \cosh (\beta+x) \tag{9}
\end{equation*}
$$

Consequently:

$$
\begin{equation*}
\sqrt{2} \omega_{\rho} t_{f}=x=\cosh ^{-1}\left(\frac{C}{\alpha}\right)-\beta \tag{10}
\end{equation*}
$$

Plugging in the values for C, α and β leads to:

$$
\begin{equation*}
t_{f}=\frac{1}{\sqrt{2} \omega_{\rho}}\left[\cosh ^{-1}\left(\frac{L+\frac{U_{z}}{4 U_{\rho}}}{\sqrt{\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right)^{2}-\left(\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}}\right)^{2}}}\right)-\tanh ^{-1}\left(\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}} \cdot \frac{1}{z_{0}+\frac{U_{z}}{4 U_{\rho}}}\right)\right] \tag{11}
\end{equation*}
$$

In the case where $|A|<|B|$ we use a similar derivation with:

$$
\begin{equation*}
C=\cosh (x)+B \sinh (x)=\alpha(\sinh (\beta) \cosh (x)+\cosh (\beta) \sinh (x))=\alpha \sinh (\beta+x) \tag{12}
\end{equation*}
$$

where

$$
\begin{gather*}
A=\alpha \sinh (\beta)=z_{0}+\frac{U_{z}}{4 U_{\rho}} \quad B=\alpha \cosh (\beta)=\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}} \tag{13}\\
C=L+\frac{U_{z}}{4 U_{\rho}} \tag{14}\\
\alpha=\sqrt{B^{2}-A^{2}}=\sqrt{\left(\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}}\right)^{2}-\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right)^{2}} \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
\beta=\tanh ^{-1}\left(\frac{A}{B}\right)=\tanh ^{-1}\left(\frac{\sqrt{2} \omega_{\rho}}{v_{z}^{0}}\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right)\right) . \tag{16}
\end{equation*}
$$

leading to:

$$
\begin{gather*}
\sqrt{2} \omega_{\rho} t_{f}=x=\sinh ^{-1}\left(\frac{C}{\alpha}\right)-\beta \tag{17}\\
t_{f}=\frac{1}{\sqrt{2} \omega_{\rho}}\left[\sinh ^{-1}\left(\frac{L+\frac{U_{z}}{4 U_{\rho}}}{\sqrt{\left(z_{0}+\frac{U_{z}}{4 U_{\rho}}\right)^{2}-\left(\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}}\right)^{2}}}\right)-\tanh ^{-1}\left(\frac{v_{z}^{0}}{\sqrt{2} \omega_{\rho}} \cdot \frac{1}{z_{0}+\frac{U_{z}}{4 U_{\rho}}}\right)\right] \tag{18}
\end{gather*}
$$

B. Second order expansion of impact position

We perform expansion of Eq. 11 around $v_{z}^{0}=z_{0}=0$. Noting that:

$$
\begin{equation*}
\left(\frac{d t_{f}}{d z_{0}}\right)_{v_{z}^{0}=z_{0}=0}=\frac{1}{\sqrt{2} \omega_{\rho}}\left[\frac{\frac{d x}{d z_{0}}}{\sqrt{x^{2}-1}}+\frac{\frac{d y}{d z_{0}}}{1-y^{2}}\right]_{v_{z}^{0}=z_{0}=0}=-\frac{2 \beta+1}{\sqrt{2+2 / \beta}} \frac{1}{\omega_{\rho} L} \tag{19}
\end{equation*}
$$

and:

$$
\begin{equation*}
\left(\frac{d t_{f}}{d v_{z}^{0}}\right)_{v_{z}^{0}=z_{0}=0}=\frac{1}{\sqrt{2} \omega_{\rho}}\left[\frac{\frac{d x}{d v_{z}^{0}}}{\sqrt{x^{2}-1}}+\frac{\frac{d y}{d v_{z}^{0}}}{1-y^{2}}\right]_{v_{z}^{0}=z_{0}=0}=\frac{\beta}{\omega_{\rho}^{2} L} \tag{20}
\end{equation*}
$$

Leads to:

$$
\begin{equation*}
t_{f}=\frac{\cosh ^{-1}(2 \beta+1)}{\sqrt{2} \omega_{\rho}}-\frac{2 \beta+1}{\sqrt{2+2 / \beta}} \frac{1}{\omega_{\rho} L} z_{0}+\frac{\beta}{\omega_{\rho}^{2} L} v_{z}^{0}+\ldots \tag{21}
\end{equation*}
$$

Expanding the expression for ρ_{f} around $\omega_{\rho} t_{f}=\pi / 2$ leads to:

$$
\begin{gather*}
\rho_{f}=\rho_{0} \cos \left(\omega_{\rho} t_{f}\right)+\frac{v_{\rho}^{0}}{\omega_{\rho}} \sin \left(\omega_{\rho} t_{f}\right) \simeq-\rho_{0} \omega_{\rho} \Delta t_{f}+\frac{v_{\rho}^{0}}{\omega_{\rho}} \tag{22}\\
\rho_{f}=\frac{v_{\rho}^{0}}{\omega_{\rho}}+\frac{1}{2^{3 / 2}}\left(\frac{4 \beta^{2}+2 \beta}{\sqrt{\beta^{2}+\beta}}\right) \frac{1}{L} \rho_{0} z_{0}-\frac{\beta}{\omega_{\rho} L} \rho_{0} v_{z}^{0}=\frac{v_{\rho}^{0}}{\omega_{\rho}}+1.38 \frac{\rho_{0} z_{0}}{L}-\frac{0.9161}{\omega_{\rho} L} \rho_{0} v_{z}^{0} \tag{23}
\end{gather*}
$$

