Supplementary Information

Carbon Dioxide Sequestration in Natural Gas Hydrates – Effect of Flue and Noble Gases

Manju Sharma^{1*} and Satyam Singh¹

¹ School of Chemistry, University of Hyderabad, Hyderabad, India 500 046

* manjusharma@uohyd.ac.in

Table S1: Number of molecules in the initial configuration ($t^* = 0$); in seed, $N_{H_20} = 3450$ and $N_{CH_4} = 600$

System	N _{CO2} ,bulk	N _{G3} ,bulk	N _{H20,bulk}	N _{CH4} ,Bulk
Pure CH ₄	-	-	3440	610
Bulk CO ₂	610	-	3440	0
H ₂ S(3:1)	458	152	3440	0
N ₂ (3:1)	458	152	3440	0
CO(3:1)	458	152	3440	0
Ne (3:1)	458	152	3440	0
Ar(3:1)	458	152	3440	0
Kr(3:1)	458	152	3440	0
Xe(3:1)	458	152	3440	0
$H_2S(1:1)$	306	304	3440	0
N ₂ (1:1)	306	304	3440	0
CO(1:1)	306	304	3440	0
Ne (1:1)	306	304	3440	0
Ar(1:1)	306	304	3440	0
Kr(1:1)	306	304	3440	0
CO ₂ :Ar(2.35:1.65)	358	252	3440	0
CO ₂ :Ar(2.5:1.5)	382	228	3440	0
CO ₂ :Ar(2.5:1.5) (Large)	632	378	5740	0

System	N _{CO2} , bulk	N _{G3} , bulk	N _{H2} 0,bulk	N _{CH4,Bulk}	N _{H20} ,Seed	N _{CH4} ,Seed
Pure CH ₄	-	-	4296	125	2594	475
Bulk CO ₂	563	-	4375	167	2515	433
H ₂ S(3:1)	433	143	4383	152	2507	448
N ₂ (3:1)	443	142	4366	144	2524	456
CO(3:1)	441	134	4349	152	2541	448
Ne (3:1)	416	135	4392	169	2498	431
Ar(3:1)	431	129	4373	171	2517	429
Kr(3:1)	431	144	4387	155	2503	445
Xe(3:1)	454	152	4384	128	2506	472
H ₂ S(1:1)	302	302	4333	150	2557	450
N ₂ (1:1)	301	300	4321	149	2569	451
CO(1:1)	300	300	4321	147	2569	453
Ne (1:1)	305	291	4383	153	2507	447
Ar(1:1)	303	298	4349	154	2541	446
Kr(1:1)	303	300	4339	147	2551	453
CO ₂ :Ar(2.35:1.65)	356	244	4359	147	2531	453
CO ₂ :Ar(2.5:1.5)	380	228	4339	150	2551	450
CO ₂ :Ar(2.5:1.5) (Large size)	614	363	6676	158	2514	442

Table S2: Number of molecules in different systems after NVT simulations at 300K ($t^* = 12$ ns)

Table S3: Box dimensions (Å³) in different systems at 2ns and 60ns of NPT simulations at 250K and 15MPa. The NPT simulations in larger system size for Ar(2.5:1.5), L(Ar(2.5:1.5)) were simulated for 80ns.

System	Box dimension (Å ³) t = 2ns	Box dimension (Å ³) t = 60ns
Pure CH ₄	60.1071 x 60.1071 x 73.3492	59.8692 x 59.8692 x 7 3.0590
Pure CO ₂	59.8412 x 59.8412 x 71.7072	59.7240 x 59.7240 x 71.5666
Pure H ₂ S	59.7444 x 59.7444 x 71.7036	59.6494 x 59.6494 x 71.5896
Bulk CO ₂	59.9718 x 59.9718 x 71.7296	59.8384 x 59.8384 x 71.57
H ₂ S(3:1)	59.9926 x 59.9926 x 72.0016	59.8360 x 59.9926 x 71.8136
N ₂ (3:1)	59.7720 x 59.7720 x 71.9116	59.7784 x 59.7784 x 71.9192
CO(3:1)	59.8762 x 59.8762 x 71.8618	59.7408 x 59.7408 x 71.6992
$H_2S(1:1)$	60.1574 x 60.1574 x 72.1994	59.9854 x 59.9854 x 71.9928
N ₂ (1:1)	59.9402 x 59.9402 x 72.5632	59.7982 x 59.7982 x 7 2.3910
CO(1:1)	59.9992 x 59.9992 x 72.6344	59.9570 x 59.9570 x 7 2.5834
Ne (3:1)	59.7022 x 59.7022 x 71.6528	59.7898 x 59.7898 x 71.7582
Ar(3:1)	59.9840 x 59.9840 x 71.9912	59.9476 x 59.9476 x 71.9476
Kr(3:1)	59.9716 x 59.9716 x 71.9762	59.7680 x 59.7680 x 71.732
Xe(3:1)	60.0512 x 60.0512 x 72.0718	59.7724 x 59.7724 x 71.7372
Ne (1:1)	59.6730 x 59.6730 x 71.6178	59.7186 x 59.7186 x 71.6726
Ar(1:1)	60.1162 x 60.1162 x 72.1496	59.8520 x 59.8520 x 71.8326
Kr(1:1)	60.0788 x 60.0788 x 72.1050	59.9480 x 59.9480 x 71.9478
Ar(2.5:1.5)	60.0644 x 60.0644 x 72.0876	59.8873 x 59.8873 x 71.8750
Ar(2.35:1.65)	59.9294 x 59.9294 x 71.9258	59.8820 x 59.8820 x 71.8686
L(Ar(2.5:1.5))	60.2726 x 60.2726 x 96.436	59.8020 x 59.8020 x 95.6834

Fig S1: Snapshots of z-axis view of the trajectories of final configurations (60ns, NPT simulation) in different systems; the center of mass of all the gases are shown in the trajectories based on type of cage occupied; cyan (methane in SC), blue (methane in LC), green (carbon dioxide in SC), yellow (carbon dioxide in LC), red (H₂S in SC of pure H₂S system or third gas in SC in third gas systems) and orange (H₂S in LC of pure H₂S system or third gas in LC in third gas systems).

Figure S2: Snapshot of cluster of methane molecule in bulk phase in the final configuration of pure CH_4 system at the end of NVT simulations at 300K; green spheres represent the center of mass of methane molecules.

Table S4: Induction time for formation of first layer besides the interface (Left side of interface, t_{L1} and Right side of interface, t_{R1}). First layer formation time (t_{L1} or t_{R1}) is calculated when F4 OP reaches 0.7 for the Left or Right side first layers; in case of systems that have slightly distorted cages, F4 OP is between 0.69 – 0.70 and F4 OP values for those systems are given in the table and total time t_{tot} (ns) as the time for complete hydrate growth in a system. {Average of t_{L1} and t_{R1} gives t_{ind} (which is reported in Figure 1)}.

System	t_{L1} , ns	t_{R1} , ns	ttot, ns (F4 OP)
(CH ₄) _P	11.79	12.91	56.69 (0.666)
(CO ₂) _P	19.10(0.68)	15.56(0.68)	25.39(0.67)
$(H_2S)_P$	5.31	1.79	21.13(0.7)
(CO ₂) _B	21.570	36.78	48.98(0.698)
H ₂ S(3:1)	23.48	34.19	58.11(0.699)
N ₂ (3:1)	29.0	35.0	44.37(0.692)
CO(3:1)	49.0(0.698)	27.0	51.82(0.7)
$H_2S(2:2)$	14.63	14.16	57.78(0.697)
N ₂ (2:2)	30.0	49.0	58.56(0.655)
CO(2:2)	39.0	42.0	57.51(0.665)
Ne (3:1)	25.71	40.46(0.67)	41.35(0.694)
Ar(3:1)	36.64	27.86	53.55(0.675)
Kr(3:1)	32.11	13.26	45.05(0.695)
Xe(3:1)	17.23	10.14	29.32(0.70)
Ne (2:2)	34.32	25.20	45.19(0.70)
Ar(2:2)	24.02	25.26	52.08(0.70)
Kr(2:2)	26.06	41.66	50.98(0.68)
Ar(2.5:1.5)	26.83	38.74	57.25(0.665)
Ar(2.35:1.65)	27.40	30.33	57.74(0.68)
L(Ar(2.5:1.5)) 21.35 1 st layer		30.20	76.70(0.68)
L(Ar(2.5:1.5)) 2 nd layer	54.46	69.49	

Figure S3: Velocity autocorrelation function plot of gases in different systems at 250K and 15MPa.

Figure S4: Snapshot of double occupancy of Ne atoms (green sphere) in large cage of hydrate (observed both in Ne(3:1) and Ne(2:2) systems).

Figure S5: Snapshots of cages formed during NPT simulations in right side of interface in $H_2S(2:2)$ system; cyan, blue, green, yellow, red and orange represent CH_4 in SC, CH_4 in LC, CO_2 in SC, CO_2 in LC, H_2S in SC and H_2S in LC. Large cage of CH_4 formed at 1ns disappears at 2ns; Ovals represent the growth synthon.

Figure S6: Growth synthon in different systems; here white, red, cyan, magenta, brown, green, yellow, mustard brown and blue spheres represent H, O, C, Xe, Kr, Ar, C(CO₂), S and N.

(a) $t^* = 0$ ns

(b) *t*^{*} = 12ns

Figure S7: Trajectories of formation of growth synthon in pure CH₄ system at different times, t^* (a) 0ns, (b) 12ns and (c) 16ns (two different views of same trajectory reported for each of the t^*). Red sphere represents oxygen of water molecules that formed cages of hydrate seed at beginning of simulation ($t^* = 0$) and green sphere represents oxygen of water molecules in bulk phase that later form hydrate cage of the growth synthon; similarly cyan sphere represents carbons of methane in hydrate seed in the initial configuration ($t^* = 0$) and dark blue sphere represents methane in the bulk phase that later form the growth synthon.

Figure S8: Trajectory of Ar(2:2) system during hydrate growth formation; d_1 and d_2 are distances between gas species that form the growth synthon; (d_1 is distance between CH₄ and Ar) and (d_2 is distance between CO₂ and Ar) respectively where d_1 and d_2 are (a) 6.29 Å and 4.07 Å at $t^* = 12$ ns, (b) 6.79 Å and 4.07 Å at $t^* = 12.5$ ns, (c) 5.8 Å and 9.69 Å at $t^* = 13$ ns, (d) 9.1 Å and 8.96 Å at $t^* = 13.2$ ns, (e) 7.1 Å and 8.39 Å at $t^* = 13.4$ ns, (f) 7.67 Å and 6.79 Å at $t^* = 14$ ns and (g) 6.8 Å and 7.2 Å at $t^* = 22$ ns.

Figure S9: Number of water molecules around a guest (N_{GW}) and number of guest molecules (N_{GG}) within a distance of 8 Å in a growth synthon.

Figure S10: Free energy profiles as a function of collective variable CV1 (distance between guests in SL cage) and CV2 (distance between guests in LL cage).

Figure S11: Free energy, kcal/mol vs CV1 (distance between two guests in SL cage, Å) or CV2 (distance between two guests in LL cage, Å) in different systems.

Type (S/L)	CH4	H ₂ S	N_2	CO	Ne	Ar	Kr	Xe	CO ₂
CH4	-0.1449	0.3846	7.4484	7.6455	6.2719	7.4886	8.0935	9.7175	2.7120(XY) 4.8725(YZ)
H ₂ S	-5.6381	-3.4105							-1.3196(P) 1.4251(T)
N ₂	1.3617		10.2791						5.8301(P) 6.4871(T)
CO	-0.0169			6.5687(AP) 7.3123(P)					6.6176(P) 5.0564(T)
Ne	5.8565				8.9419				8.6971(XY) 8.1506(YZ)
Ar	6.3202					10.4485			10.9361(XY) 11.5372(YZ)
Kr	5.0526						14.3283		11.3759(XY) 9.3968(YZ)
Xe	8.7649							17.6428	15.2683(XY) 13.4555(YZ)
CO ₂	9.8781 (XY) 8.0665 (YZ)	5.7466 (P) 10.0149 (T)	16.8653 (P) 13.7247 (T)	12.5481(P) 14.9320(T)	18.1730 (XY) 17.2694 (YZ)	16.9193 (XY) 16.2661 (YZ)	19.6702 (XY) 17.0071 (YZ)	19.3879 (XY) 16.2221 (YZ)	12.2237(XY) 10.7353(YZ) 10.7472(P)

Table S5: Zero-point corrected DFT Gibbs Free Energy(ΔG_{DC}) for different combination of gas species in SLDC; SL dual cages (S - small, L - large).

XY - orientation of molecules represented that both the molecules perpendicular to each other, where large cage guest molecule was parallel to shared pentagonal face, however, small cage guest molecule was perpendicular to shared pentagonal face.

YZ - orientation of molecules represented that both the molecules perpendicular to each other, where, small cage guest molecule was parallel to shared pentagonal face, however, large cage guest molecule was perpendicular to shared pentagonal face.

P - orientation represented that both the molecules were parallel to each other.

T - represented the T shape orientation (perpendicular to each other) of guest molecules, where a guest molecule was parallel to shared pentagonal face, however, other was perpendicular to shared pentagonal face.

AP - represented that both molecules were parallel and opposite in orientation to each other.

LL dual cages (L - large).

Type (L/L)	CH4	H ₂ S	N2	CO	Ne	Ar	Kr	Xe	CO ₂
CH4	-4.2049	-6.7023	0.8252	-1.4840	2.4428	2.6713	3.8108	5.5145	3.7142(H) 0.3294(T)
H ₂ S		-8.6702							-0.0734(T) -5.1995(P)
N2			7.8971						3.3634(P) 7.3888(T)
CO				5.394(P) 4.4339(AP)					4.0179(P) 5.0896(T)
Ne					13.0313				11.6483(H) 9.6742(T)
Ar						12.5563			12.7935(H) 9.7633(T)
Kr							9.6723		11.8692(H) 10.1178(T)
Xe								14.865	12.7552(H) 11.7179(T)
CO ₂									6.4482(T) 3.1331(P)

T represents the T shape orientation (perpendicular to each other) of guest molecules, where a guest molecule was parallel to shared hexagonal face, however, other was perpendicular to shared pentagonal face.

H represents the H shape orientation (parallel to each other) of guest molecules, where both the guest molecules were parallel to shared hexagonal face.

P orientation represents that both the molecules were parallel to each other.

Figure S12: Different orientations chosen for gas species in dual cages for DFT free energy calculations.

LAMMPS Input file for bulk CO₂ system (here User.data file is the configuration file as per LAMMPS format).

newton on boundary p p p atom style full bond_style harmonic angle style harmonic dihedral_style none read_data H2O_ User.data pair_style hybrid lj/cut/coul/long 12.0 10.0 lj/cut/tip4p/long 5 4 3 2 0.1546 12.0 10.0 group H2O type 5 4 kspace style pppm/tip4p 1.0e-04 3.50000 2.80000 lj/cut/coul/long 0.06600 lj/cut/coul/long 0.05590 lj/cut/coul/long 0.03000 pair_coeff 1 1 2 2 pair_coeff י, י י/ וווכ 2 50000

pair_coerr	3	3	IJ/Cut/Coul/long	0.03000	2.50000
pair_coeff	4	4	lj/cut/tip4p/long	0.00000	0.0000
pair_coeff	5	5	lj/cut/tip4p/long	0.18520	3.15890
pair_coeff	6	6	lj/cut/coul/long	0.15970	3.02800
pair_coeff	1	2	lj/cut/coul/long	0.06074	3.15000
pair_coeff	1	3	lj/cut/coul/long	0.04450	3.00000
pair_coeff	1	4	lj/cut/coul/long	0.00000	1.75000
pair_coeff	1	5	lj/cut/coul/long	0.11056	3.32945
pair_coeff	1	6	lj/cut/coul/long	0.10267	3.26400
pair_coeff	2	3	lj/cut/coul/long	0.04095	2.65000
pair_coeff	2	4	lj/cut/coul/long	0.00000	1.40000
pair_coeff	2	5	lj/cut/coul/long	0.10175	2.97945
pair_coeff	2	6	lj/cut/coul/long	0.09448	2.91400
pair_coeff	3	4	lj/cut/coul/long	0.00000	1.25000
pair_coeff	3	5	lj/cut/coul/long	0.07454	2.82945
pair_coeff	3	6	lj/cut/coul/long	0.06922	2.76400
pair_coeff	4	5	lj/cut/tip4p/long	0.00000	1.57945
pair_coeff	4	6	lj/cut/coul/long	0.00000	1.51400
pair_coeff	5	6	lj/cut/coul/long	0.17198	3.09345
<pre>pair_modify</pre>	tail	no			

velocity all create 250.0 6928459 rot yes dist gaussian

neighbor 2.0 bin neigh_modify delay 0 every 1 check yes

thermo 1000 thermo_style multi

restart 1000 renew

dump 3 all xyz 1000 dump 0.5fs.xyz

min_style sd minimize 1.0e-8 1.0e-9 100000 1000000

min_style sd min_modify dmax 0.005 minimize 1.0e-8 1.0e-9 100000 1000000 min_style sd min_modify dmax 0.005 minimize 1.0e-8 1.0e-9 100000 1000000 min_style sd fix 1 H2O shake 0.0001 20 10 b 3 a 2 timestep 1.0 fix 11 all nvt temp 250.0 250.0 60.0 run 2000000 unfix 11 timestep 1.0 fix 11 all nvt temp 300.0 300.0 60.0 #iso 148.038 148.038 2000 run 1000000

G09 input file (LLDC with CH₄ as gas species)

%chk=opt.chk #b3lyp/cc-pVDZ freq

Title Card Required

01 O 13.743904 13.765982 13.807000 H 13.413082 12.971174 14.303058 H 14.260877 13.424586 13.030784 O 11.648004 15.247764 12.989533 Н 11.688442 15.373376 12.009270 H 12.408649 14.659792 13.240060 O 11.569337 17.451729 14.549867 H 11.577819 16.621132 14.008142 H 12.402491 17.461954 15.094380 O 9.502487 21.151421 13.731703 Н 8.899642 20.587967 14.294575 Н 10.255231 20.560778 13.462700 O 11.597806 19.652790 12.989882 H 11.585140 18.791981 13.487683 H 12.406558 20.135019 13.303622 O 9.527587 13.815134 9.467046 H 9.800657 13.028228 8.926019 H 8.988419 13.479781 10.230132 O 11.679959 15.294012 10.212818 H 10.896306 14.732998 9.981696 Н 12.458732 14.720797 9.988436 O 11.682516 17.494841 8.650160 Н 11.675195 16.650879 9.177360 Н 11.543657 18.236078 9.298324 O 13.689522 21.078796 9.586849 Н 14.282026 20.524406 9.003292 Н 12.935035 20.493263 9.850390 O 11.496015 19.619789 10.284281 Н 11.511585 19.549023 11.273492 Н 10.752567 20.230536 10.039448 O 15.160033 12.944796 11.671477 Н 16.032230 13.424005 11.662878 H 15.305515 11.966160 11.664969 O 5.764798 14.475499 11.636036

Н 6.611896 13.957712 11.619535 Н 5.745044 14.999909 12.481158 O 17.384798 14.475499 11.636036 Н 18.231895 13.957712 11.619535 H 17.365044 14.999909 12.481158 0 8.059400 13.033573 11.593623 Η 7.956679 12.046919 11.625229 8.641445 13.276547 12.362518 Η O 15.180717 21.855593 11.678797 Н 16.039667 21.355003 11.677984 H 14.661070 21.540110 10.890729 5.826965 20.353127 11.685769 0 Н 5.711579 19.721231 12.443626 5.851135 19.814308 10.852731 Η O 17.446964 20.353127 11.685769 Н 17.331579 19.721231 12.443626 Η 17.471134 19.814308 10.852731 0 8.018846 21.944138 11.638476 Η 7.180928 21.416010 11.692625 Η 8.573236 21.641088 12.406093 0 7.907061 19.622345 15.225105 Н 8.408581 18.832649 15.559645 Η 7.117018 19.267818 14.737414 0 9.318891 17.470785 16.043154 H 10.190043 17.468927 15.561853 Η 9.476459 17.490889 17.020163 O 15.260314 15.310280 15.393246 H 14.688958 14.746012 14.799813 H 15.541518 14.724632 16.146570 O 13.758429 17.433022 16.121122 H 14.325485 16.651228 15.892442 H 14.338848 18.209702 15.899646 0 7.968996 15.403123 7.957725 Н 8.555574 14.808993 8.505259 7.225548 15.670151 Η 8.558595 9.415802 17.504135 Ο 7.124803 Н 10.276263 17.506924 7.620047 Η 8.906846 16.715021 7.456670 0 15.312487 19.616768 8.051382 Н 14.842807 18.814407 7.691510 H 16.100323 19.283274 8.558014 O 13.952483 17.468115 7.214161 H 13.084817 17.495886 7.696856 Н 13.783760 17.444757 6.237848 0 5.722850 18.760374 13.870097 Η 5.699959 17.776392 13.766679 Η 4.981843 19.006252 14.484911 O 17.342850 18.760374 13.870097 Н 17.319960 17.776392 13.766679 H 16.601843 19.006252 14.484911 0 5.870192 18.849266 9.419637 Η 5.891456 17.865982 9.534559 6.630372 19.090149 8.829341 Н O 17.490192 18.849266 9.419637 Н 17.511456 17.865982 9.534559 H 18.250372 19.090149 8.829341 5.743534 16.006201 13.851737 0 Η 4.982656 15.767178 14.443311 6.548683 15.772756 14.382306 Η Ο 17.363535 16.006201 13.851737 H 16.602655 15.767178 14.443311 H 18.168682 15.772756 14.382306 0 5.852413 16.120193 9.486684

Η	5.831265	15.594970	10.330645
Η	5.060859	15.818306	8.965992
0	17.472412	16.120193	9.486684
Η	17.451265	15.594970	10.330645
Η	16.680859	15.818306	8.965992
0	9.456588	21.194067	9.484128
Η	8.902895	20.610510	8.891508
Η	8.867803	21.465393	10.237220
0	13.809557	13.777021	9.508065
Η	13.465024	12.977332	9.024905
Η	14.286790	13.437252	10.312053
0	13.774464	21.046957	13.838955
Η	13.423308	21.844788	14.316770
Η	14.265409	21.383007	13.043334
0	9.528749	13.745182	13.719037
Η	8.934502	14.300502	14.299340
Η	10.278006	14.335478	13.448872
0	15.376978	15.302029	7.996535
Η	14.803764	14.718473	8.573120
Η	14.808877	16.066626	7.719747
0	7.958538	19.638845	7.903343
Η	8.491780	18.866697	7.580191
Η	7.615051	20.121193	7.105398
0	15.284483	19.517183	15.418810
Η	14.718938	20.081800	14.818754
Η	15.548373	20.106436	16.172018
0	7.946569	15.268912	15.259965
Η	8.427870	16.069880	15.595434
Η	7.612959	14.784823	16.063023
С	8.652136	17.687614	11.808593
Η	9.529097	17.834261	11.174838
Η	8.334445	18.646149	12.223078
Η	7.836993	17.267900	11.214811
Η	8.896969	16.997852	12.619204
С	14.441220	17.706787	11.469870
Η	15.368496	17.181332	11.228871
Η	14.647475	18.769205	11.615584
Η	13.729146	17.577108	10.652519
Η	14.008840	17.291954	12.382853