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Part-A (Method-I)

A1. Time evolution in the Schrödinger picture

As the operator H has off diagonal operators, an additional transformation is performed on the
H operator (resulting in a transformed operator, Hd, which is diagonal in the Hilbert space)
and is defined in terms of the polarization operator basis as follows:

U1 = eiθβIXSβeiθαIXSα (1)

tan θα/β =

(
ω

(Y )
I ± 2ω

(Y )
IS

)
ω

(Z)
I

(2)

Hd = U1HU
†
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(Z)
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(Z)
IS IZSZ (3)

where Sα/β =
(

1
2

)
± SZ are the polarization operators for the ‘S’-spin. For the purpose of

the discussion in this section we have also considered on-resonance CW irradiation (i.e. set

the offset on the ‘I’-spin (∆ω) as zero). The coefficients ω̃
(Z)
I /ω̃

(Z)
IS are defined in terms of the

original ω-coefficients in the operator H (Eq.(90) of the main section).
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To maintain consistency, both the initial density operator (ρ (0) = SX), the operator, P (t)
and the detection operator, S+ are also transformed as follows.

ρd (0) = U1ρ (0)U †1 = SX cos

(
θα − θβ

2

)
− 2IXSY sin

(
θα − θβ

2

)
(6)

Pd (t) = U1P (t)U †1 ' P (t) (7)

S+
d = U1S

+U †1 = S+ cos

(
θα − θβ

2

)
+ 2iIXS

+ sin

(
θα − θβ

2
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(8)

where we have retained the corrections due to the transformations for the operator P (t) to the
lowest order.

Employing the above relations, the time-domain signal can be derived through suitable
approximations as follows.

ρd (t) = Ud (t) ρd (0)U †d (t) = Pd (t) e−iHdtρd (0) eiHdtP †d (t) (9)

where, Ud (t) = U1U (t)U †1 = Pd (t) e−iHdt, represents the transformed evolution operator.

ρd (t) = Pd (t) e−iHdtρd (0) eiHdt︸ ︷︷ ︸
ρ′d(t)

P †d (t) = {P0 (t) + P1 (t) + P2 (t)} ρ′d (t)
{
P †0 (t) + P †1 (t) + P †2 (t)

}
(10)
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By employing the form of Hd given above, the form for ρ′d (t) can be derived as follows.

ρ′d (t) = cos
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2

){
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(11)

This leads to the following form for the signal expression:
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d

]
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(12)

where the coefficients Ci (t)/Si (t) are defined in Table 1.
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Role of non-secular terms in time evolution

To rule out the role of the non-secular terms (such [H0,Hn]) in H in the discrepancy observed in
the analytic simulations in the Schrödinger picture, additional simulations, both in the presence
and absence of the non-secular terms were performed and compared with numerical simulations.
As indicated in Figure 1, the analytic simulations both in the presence (first row, indicated in
red color) and absence (second row, indicated in blue color) are in complete disagreement to
those obtained from numerical simulations (indicated in black color). Hence, the disagreement
observed in the analytic simulations could be due to some inherent limitations of the method.

Figure 1: In the simulations depicted, the time-domain signal (panels A1, A2 and B1, B2)
under CW decoupling is illustrated under varying spinning frequencies and RF amplitudes (i.e.
νr = 20 kHz; ν1 = 50 kHz (panels A1, B1) and νr = 50 kHz; ν1 = 20 kHz (panels A2, B2)). The
simulations from numerical methods (indicated through black solid line) are compared with
analytic simulations based on single-mode based Method-I formalism with i) complete form
of H (indicated in red, top row) and ii) with non-secular terms dropped from H (indicated in
blue, bottom row). All other parameters are similar to those employed in the main article.
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A2. Time evolution in the Interaction picture

(i) Normal boundary condition (P (0) = 1)

Based on the calculations given in the main section, the final form of the signal expression in
the interaction picture is given by the following equation.

S (t) = Tr
[
ρ (t)S+

]
= C1 (t). cos

(
ω̃

(Z)
IS t

2

)
+ S1 (t). sin

(
ω̃

(Z)
IS t

2

)
(13)

where the coefficients Ci (t)/Si (t) are defined in Table 2.
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(ii) Alternate boundary condition (P (0) 6= 1)

Employing the bimodal framework, the evolution operator in the standard Hilbert space is
derived in terms of the operators H and P (t), as given below.

U (t) = P (t) e−iHtP † (0) (14)

H = H
(0)

+H
(1)

+H
(2)

= ω̃
(Z)
I IZ + ω̃

(Z)
IS IZSZ︸ ︷︷ ︸

H
(2)

(15)

P (t) = P0 (t) + P1 (t) + P2 (t)

= 1︸︷︷︸
P0(t)

+CP (t) I+ + CM (t) I− + CPZ (t) I+SZ + CMZ (t) I−SZ︸ ︷︷ ︸
P1(t)

+ CPM (t) I+I− + CMP (t) I−I+ + CPMZ (t) I+I−SZ + CMPZ (t) I−I+SZ︸ ︷︷ ︸
P2(t)

(16)

A detailed description of the various cross-terms employed in the derivation of the effective
evolution operator is listed in Table 3.

Subsequently, utilizing the modified form of U (t), the evolution of the system under CW
decoupling is calculated and given below.

ρ (t) = U (t) ρ (0)U † (t) = P (t) e−iHtP † (0) ρ (0)P (0) eiHtP † (t) (17)

ρ (t) = P (t) e−iHtP † (0) ρ (0)P (0) eiHt︸ ︷︷ ︸
ρ̃0(t)

P † (t)

= [P0 (t) + P1 (t) + P2 (t)] ρ̃0 (t)
[
P †0 (t) + P †1 (t) + P †2 (t)

]
(18)

where,

ρ̃0 (0) = P † (0) ρ (0)P (0) =
[
P †0 (0) + P †1 (0) + P †2 (0)

]
ρ (0) [P0 (0) + P1 (0) + P2 (0)]

= AX (0)SX + APX (0) I+SX + AMX (0) I−SX + APY (0) I+SY + AMY (0) I−SY

+ APMX (0) I+I−SX + AMPX (0) I−I+SX + APMY (0) I+I−SY + AMPY (0) I−I+SY

(19)
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Subsequently, the final form of the signal expression is derived and given below.

S (t) = Tr
[
ρ (t)S+

]
= AX (t) +

(
1

2

)
{APMX (t) + AMPX (t) + iAPMY (t) + iAMPY (t)}

+

(
1

2

)
{C∗P (t) + CM (t)} {APX (t) + iAPY (t)}

+

(
1

2

)
{C∗M (t) + CP (t)} {AMX (t) + iAMY (t)}

+

(
1

4

)
{C∗PZ (t)− CMZ (t)} {APX (t) + iAPY (t)}

+

(
1

4

)
{C∗MZ (t)− CPZ (t)} {AMX (t) + iAMY (t)}

(20)

The coefficients A (0) and A (t) are described in Table 4.

9



Operator Coefficient

SX

AX (0) = 1

AX (t) = cos

(
ω̃
(Z)
IS t

2

)

IZSY

AZY (0) = 0

AZY (t) = 2 sin

(
ω̃
(Z)
IS t

2

)

I+SX

APX (0) = C∗M (0) + CP (0)−
(

1
4

)
C∗MZ (0)CMPZ (0)−

(
1
4

)
C∗PMZ (0)CPZ (0)

APX (t) = APX (0) e−iω̃
(Z)
I t

I−SX

AMX (0) = C∗P (0) + CM (0)−
(

1
4

)
C∗PZ (0)CPMZ (0)−

(
1
4

)
C∗MPZ (0)CMZ (0)

AMX (t) = AMX (0) e+iω̃
(Z)
I t

I+SY

APY (0) =
(
i
2

)
[C∗MZ (0)− CPZ (0)− C∗M (0)CMPZ (0) + C∗PMZ (0)CP (0)]

APY (t) = APY (0) e−iω̃
(Z)
I t

I−SY

AMY (0) =
(
i
2

)
[C∗PZ (0)− CMZ (0)− C∗P (0)CPMZ (0) + C∗MPZ (0)CM (0)]

AMY (t) = AMY (0) e+iω̃
(Z)
I t

I+I−SX

APMX (0) = C∗M (0)CM (0)−
(

1
4

)
C∗MZ (0)CMZ (0)−

(
1
4

)
C∗PMZ (0)CPMZ (0)

APMX (t) = APMX (0) cos

(
ω̃
(Z)
IS t

2

)
− APMY (0) sin

(
ω̃
(Z)
IS t

2

)

I−I+SX

AMPX (0) = C∗P (0)CP (0)−
(

1
4

)
C∗PZ (0)CPZ (0)−

(
1
4

)
C∗MPZ (0)CMPZ (0)

AMPX (t) = AMPX (0) cos

(
ω̃
(Z)
IS t

2

)
+ AMPY (0) sin

(
ω̃
(Z)
IS t

2

)

I+I−SY

APMY (0) =
(
i
2

)
[C∗PMZ (0)− CPMZ (0)− C∗M (0)CMZ (0) + C∗MZ (0)CM (0)]

APMY (t) = APMY (0) cos

(
ω̃
(Z)
IS t

2

)
+ APMX (0) sin

(
ω̃
(Z)
IS t

2

)

I−I+SY

AMPY (0) =
(
i
2

)
[C∗MPZ (0)− CMPZ (0)− C∗P (0)CPZ (0) + C∗PZ (0)CP (0)]

AMPY (t) = AMPY (0) cos

(
ω̃
(Z)
IS t

2

)
− AMPX (0) sin

(
ω̃
(Z)
IS t

2

)
Table 4: Description of coefficients appearing in the derivation of the signal expression
(Eqns.(19) and (20)) based on Method-I (bimodal formalism) with P (0) 6= 1

10



Part-B (Method-II)

B1. Time evolution in the Schrödinger picture

Owing to the similar form of the operator H in both Method-I and Method-II, the diagonaliza-
tion transformation leads to a similar form of the transformed operator, Hd (withHd = U1HU

†
1).

Uαβ = eiθβIXSβeiθαIXSα (21)

tan θα/β =

(
ω

(Y )
I ± 2ω

(Y )
IS

)
ω

(Z)
I

(22)

H ′ = UαβHU
†
αβ = ω̃

(Z)
I IZ + ω̃

(Z)
IS IZSZ (23)

The coefficients ω̃
(Z)
I /ω̃

(Z)
IS are defined in terms of the original ω-coefficients in the operator

H (Eq.(100) of the main section).

ω̃
(Z)
I = −

(ω(Z)
I

2

)2

+

(
ω

(Y )
I

2
+ ω

(Y )
IS

)2
1/2

−

(ω(Z)
I

2

)2

+

(
ω

(Y )
I

2
− ω(Y )

IS

)2
1/2

(24)

ω̃
(Z)
IS = −

(
1

2

)(ω(Z)
I

2

)2

+

(
ω

(Y )
I

2
+ ω

(Y )
IS

)2
1/2

+

(
1

2

)(ω(Z)
I

2

)2

+

(
ω

(Y )
I

2
− ω(Y )

IS

)2
1/2

(25)

To maintain consistency, both the initial density operator (ρ (0) = SX), the operator, P (t)
and the detection operator, S+ are also transformed as follows.

ρd (0) = U1ρ (0)U †1 = SX cos

(
θα − θβ

2

)
− 2IXSY sin

(
θα − θβ

2

)
(26)

Λd (t) = U1Λ (t)U †1 ' Λ (t) (27)

S+
d = S+ cos

(
θα − θβ

2

)
+ 2iIXS

+ sin

(
θα − θβ

2

)
(28)

where we have retained the corrections due to the transformations for the operator Λ (t) to the
lowest order.

Employing the above relations, the time-domain signal can be derived through suitable
approximations as follows.

ρd (t) = Ud (t) ρd (0)U †d (t) = e−iΛd(t) e−iHdtρd (0) eiHdt︸ ︷︷ ︸
ρ′d(t)

eiΛd(t) (29)

where, Ud (t) = U1U (t)U †1 = Pd (t) e−iHdt, represents the transformed evolution operator.
By employing the form of Hd given above, the form for ρ′d (t) can be derived as follows.

ρ′d (t) = cos

(
θα − θβ

2

){
SX cos

(
ω̃

(Z)
IS t

2

)
+ 2IZSY sin

(
ω̃

(Z)
IS t

2

)}

− 2 sin

(
θα − θβ

2

){
IXSY cos

(
ω̃

(Z)
I t
)

+ IY SY sin
(
ω̃

(Z)
I t
)}

(30)
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This leads to the following form for the signal expression:

S (t) = Tr
[
ρd (t)S+

d

]
= C̃1 (t). cos

(
ω̃

(Z)
IS t

2

)
+ S̃1 (t). sin

(
ω̃

(Z)
IS t

2

)
+ C̃2 (t). cos

(
ω̃

(Z)
I t
)

+ S̃2 (t). sin
(
ω̃

(Z)
I t
)

(31)

where the coefficients C̃i (t)/S̃i (t) are defined in Table 5.
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Role of non-secular terms in time evolution

Analogous to the discussion in Part-A, to rule out the role of the non-secular terms (such
[H0,Hn]]) in H in the discrepancy observed in the analytic simulations in the Schrodinger pic-
ture, additional simulations, both in the presence and absence of the non-secular terms were
performed and compared with numerical simulations. As indicated in Figure 2, the analytic
simulations both in the presence (first row, indicated in red color) and absence (second row,
indicated in blue color) are in complete disagreement to those obtained from numerical simula-
tions (indicated in black color). Hence, the disagreement observed in the analytic simulations
could be due to some inherent limitations of the method.

Figure 2: In the simulations depicted, the time-domain signal (panels A1-A2 and B1-B2) under
CW decoupling is illustrated under varying RF amplitudes (i.e. νr = 20 kHz; ν1 = 50 kHz
(panels A1, B1) and ν1 = 50 kHz; ν1 = 20 kHz (panels A2, B2)). The simulations from
numerical methods (indicated through black solid line) are compared with analytic simulations
based on single-mode based Method-II formalism with i) complete form of H (indicated in
red, top row) and ii) with non-secular terms dropped from H (indicated in blue, bottom row).
All other parameters are similar to those employed in the main article.
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B2. Time evolution in the Interaction picture

(i) Normal boundary condition (P (0) = 1)

Based on the calculations given in the main section, the final form of the signal expression in
the interaction picture is given by the following equation.

S (t) = Tr
[
ρ (t)S+

]
= C̃1 (t) cos

(
ω̃

(Z)
IS t

2

)
+ S̃1 (t) sin

(
ω̃

(Z)
IS t

2

)
(32)

where the coefficients Ci (t)/Si (t) are defined in Table 6.

CW Decoupling
Method-I

Signal Coefficient

C̃1 (t)
[
1− 1

2

{
1
2
C̃PZ (t) C̃MZ (t) + 1

8
C̃2
ZZ (t)

}]

S̃1 (t)
[

1
4
C̃ZZ (t)

]

Table 6: Description of coefficients (Ci (t) and Si (t)) appearing in the derivation of the time-
domain signal (Eq.(96) of the main article) based on Method-II (Interaction picture formalism)

(ii) Alternate boundary condition (P (0) 6= 1)

Employing bimodal FME formalism, the evolution operator in the standard Hilbert space is
derived in terms of the operators H and Λ (t), as given below.

U (t) = e−iΛ(t)e−iHteiΛ(0) (33)

H = H̄(1) + H̄(2) = ω̃
(Z)
I IZ + ω̃

(Z)
IS IZSZ︸ ︷︷ ︸

H̄(2)

(34)

Λ (t) = Λ1 (t) + Λ2 (t) = C̃P (t) I+ + C̃M (t) I− + C̃PZ (t) I+SZ + C̃MZ (t) I−SZ︸ ︷︷ ︸
Λ1(t)

+ C̃Z (t) IZ + C̃ZZ (t) IZSZ︸ ︷︷ ︸
Λ2(t)

(35)

A detailed description of the various cross-terms employed in the derivation of the effective
evolution operator is listed in Table 7.

Subsequently, utilizing the modified form of U (t), the evolution of the system under CW
decoupling is calculated and given below.

ρ (t) = U (t) ρ (t)U † (t) = e−iΛ(t)e−iHteiΛ(0)ρ (0) e−iΛ(0)eiHteiΛ(t) (36)
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ρ (t) = e−iΛ(t) e−iHteiΛ(0)ρ (0) e−iΛ(0)eiHt︸ ︷︷ ︸
ρ̃0(t)

eiΛ(t) = ρ̃0 (t) + {−i [Λ (t) , ρ̃0 (t)]} (37)

ρ̃0 (0) = eiΛ(0)ρ (0) e−iΛ(0) = ρ (0) + i [Λ (0) , ρ (0)] (38)

S (t) = Tr
[
ρ (t)S+

]
=

[
cos

(
ω̃

(Z)
IS t

2

)
+

1

2
C̃ZZ (0) sin

(
ω̃

(Z)
IS t

2

)]
+

1

2

[
C̃PZ (t) C̃MZ (0) eiω̃

(Z)
I t + C̃MZ (t) C̃PZ (0) e−iω̃

(Z)
I t
]

(39)
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Part-C (Method-III)

C1. Time evolution in the Schrödinger picture

In order to employ Floquet theory, the time-dependent Hamiltonian in the tilted rotating frame
(Eqns.(20)-(23)) is transformed into a time-independent Floquet Hamiltonian.

HF = ωrIF +HCSA
F,I +HF,IS +HCW

F,I (40)

HCW
F,I = ω1[IZ ]0 =

(
GZ
)(0)

I
[IZ ]0 (41)

HCSA
F,I = −∆ω[IX ]0 −

2∑
m=−2
m 6=0

ω
(m)
I [IX ]m =

2∑
m=−2

{(
G+
)(m)

I

[
I+
]
m

+
(
G−
)(m)

I

[
I−
]
m

}
(42)

HF,IS = −
2∑

m=−2
m6=0

2ω
(m)
IS [IXSZ ]m =

2∑
m=−2
m6=0

{(
G+
)(m)

IS

[
I+SZ

]
m

+
(
G−
)(m)

IS

[
I−SZ

]
m

}
(43)

The above expressions lead to the introduction of the so-called ”dressed states” (|ΦM ;n〉)
and ”ladder operators” (Fn) belonging to an extended Hilbert space. The basis states in
the extended space are constructed from a direct product between the spin states (defined in
the Hilbert space) with those of the Fourier states (defined in the Fourier space). The spin

Hamiltonian operators (
[
Â
]
n
), in the extended Hilbert space are constructed from a direct

product between the Fourier operator, Fn (defined in an infinite dimensional vector space) and
the spin operator, Â (defined in a finite dimensional vector space):

|Φα;m〉 = |n〉 ⊗ |Φα〉 ; Ân = Fn ⊗ Â (44)

The number operator, IF corresponding to the MAS modulation in the extended Hilbert space
is defined as in the infinite dimensional Fourier space in the following manner.

IF =
∞∑

m=−∞

{m |m〉 〈m|} (45)

The details of the infinite dimensional extended Hilbert spaces can be found in references [3],
[4] and [16] mentioned in the main article.

To simplify the description in the extended Hilbert space, contact transformation is em-
ployed to derive an effective Hamiltonian. Accordingly, the Floquet Hamiltonian is represented
in terms of a zero-order and perturbing Floquet Hamiltonian as defined below:

H0 = ωrIF +HCW
F,I (46)

H1 = HCSA
F,I +HF,IS (47)

Employing the transformation function S1 (Table 8), the Floquet Hamiltonian is trans-
formed, resulting in an effective Hamiltonian (Heff

F ).

S1 = i [S1,I + S1,IS] (48)

Heff
F = eiλS1HF e

−iλS1 = H0 +H
(1)
2,d = ωrIF + ω̃I [IZ ]0 + ω̃IS[IZSZ ]0 (49)

The coefficients in the effective Hamiltonian (Eq.(8)) are similar to those derived using FME
(Table VII of main article).
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Operator Coefficients

1. Hamiltonian

HF,I

[I±]0 (G±)
(0)
I = −∆ω

2

[I±]m (G±)
(m)
I = −ω

(m)
I

2

[IZ ]0
(
GZ
)(0)

I
= ω1

HF,IS

[I±SZ ]m (G±)
(m)
IS = −ω(m)

IS

2. Transformation
function

Single spin operators

S1,I

[I±]m (C±)
(m)
I =

−i(G±)
(m)

I

(mωr±ω1)

Two spin operators

S1,IS

[I±SZ ]m, (C±)
(m)
IS =

−i(G±)
(m)

IS

(mωr±ω1)

Table 8: Description of coefficients present in the Floquet Hamiltonian and the transformation
functions (S1) employed in contact transformation methods (single mode)
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To have a consistent description, both the initial density operator (ρF (0) = [SX ]0,0) and
the detection operator ([S+]0,0) are transformed by the transformation function, S1,

ρ̃F (0) = eiλS1ρF (0) e−iλS1 (50)

S̃+ = eiλS1
[
S+
]

0,0
e−iλS1 (51)

Subsequently, the time domain signal in the Floquet framework is evaluated,

〈
S̃+ (t)

〉
F

= Tr
[
ρ̃F (t) S̃+

]
=
[
A2 −B2

]
cos

(
ω̃

(1)
IS t

2

)

+
2∑

m=−2
m 6=0


∣∣∣ω(m)

IS

∣∣∣2
(mωr + ω1)2 e

i(ω̃I+mωr+ω1)t +

∣∣∣ω(m)
IS

∣∣∣2
(mωr − ω1)2 e

i(−ω̃I+mωr−ω1)t

 (52)

where, ρ̃F (t) = e−iH
eff
F,CT tρ̃F (0) eiH

eff
F,CT t. In the above expression, the coefficients A and B have

the following definitions:

A =

1− 1

2

2∑
m=−2
m6=0

∣∣∣ω(m)
IS

∣∣∣2 m2ω2
r + ω2

1

(m2ω2
r − ω2

1)
2

 ; B =
2∑

m=−2

mωrω1ω
(m)
I ω

(−m)
IS

(m2ω2
r − ω2

1)
2 (53)

C2. Time evolution in the Interaction picture

Employing an operator basis defined in an infinite dimensional vector space, the time-dependent
Hamiltonian in the RF interaction frame (Eqns.(44)-(46)) is transformed into a time-independent
Floquet Hamiltonian.

HF = ωrIF + ω1SF +HF,I +HF,IS (54)

where

HF,I =
2∑

m=−2

{(
G+
)(m,+1)

I

[
I+
]
m,+1

+
(
G−
)(m,−1)

I

[
I−
]
m,−1

}
(55)

HF,IS =
2∑

m=−2
m6=0

{(
G+
)(m,+1)

IS

[
I+SZ

]
m,+1

+
(
G−
)(m,−1)

IS

[
I−SZ

]
m,−1

}
(56)

A detailed description of the Floquet operators (IF , SF , (Op)m,n) is well-documented and is
omitted to avoid repetition. The ’G’ coefficients employed in the Floquet Hamiltonian are given
in Table 9. The time-independent Floquet Hamiltonian is defined in an infinite dimensional
vector space and in its present form is less suited for analytic description. To alleviate this
problem in the Floquet-Hilbert space, perturbative approaches based on contact transformation
is employed to derive effective Floquet Hamiltonians.

In accord with perturbative treatments, the Floquet Hamiltonian is split and re-expressed
as a sum of zero-order and perturbing Hamiltonians:

H0 = ωrIF + ω1SF (57)

H1 = HF,I +HF,IS (58)
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Operator Coefficients

1. Hamiltonian

HF,I

[I±]0,±1 (G±)
(0,±1)
I = −∆ω

2

[I±]m,±1 (G±)
(m,±1)
I = −ω

(m)
I

2

HF,IS

[I±SZ ]m,±1 (G±)
(m,±1)
IS = −ω(m)

IS

2. Transformation
function

Single spin operators

S1,I

[I±]m,±1 (C±)
(m,±1)
I =

−i(G±)
(m,±1)

I

(mωr±ω1)

Two spin operators

S1,IS

[I±SZ ]m,±1 (C±)
(m,±1)
I =

−i(G±)
(m,±1)

IS

(mωr±ω1)

Table 9: Description of coefficients present in the Floquet Hamiltonian and the transformation
functions (S1) employed in contact transformation methods (bimodal)

The zero order Hamiltonian (H0) mostly comprises of operators that are diagonal in the Fourier
dimension, while, the perturbing Hamiltonian (H1) comprises of operators that are off-diagonal
in the Fourier dimension.

Employing the transformation function, S1, the original Floquet Hamiltonian is transformed
into an effective Hamiltonian:

Heff
F,CT = eiλS1HF e

−iλS1 (59)

The transformation function ‘S1’ comprises of operators, whose coefficients are chosen to com-
pensate the off-diagonality to order ‘λ’ in H1 (i.e. H

(1)
1 = H1 + i [S1, H0] = 0):

S1 = i [S1,I + S1,IS] (60)

A detailed description of the operators is S1, along with their coefficients (C+)
(m,n)
I/IS and (C−)

(m,n)
I/IS

is listed in Table 9.
Subsequently, following the standard procedure, the effective Hamiltonian (upto second

order) is derived and expressed in terms of operators that are diagonal in both the spin and
Fourier dimension.

Heff
F,CT = H0 +H

(1)
2,d = ωrIF + ω1SF + ω̃I [IZ ]0,0 + ω̃IS[IZSZ ]0,0 (61)
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Subsequently, the time domain signal in the Floquet framework is evaluated,

〈
S̃+ (t)

〉
F

= Tr
[
ρ̃F (t) S̃+

]
=
[
A2 −B2

]
cos

(
ω̃

(1)
IS t

2

)

+
2∑

m=−2
m 6=0


∣∣∣ω(m)

IS

∣∣∣2
(mωr + ω1)2 e

i(ω̃I+mωr+ω1)t +

∣∣∣ω(m)
IS

∣∣∣2
(mωr − ω1)2 e

i(−ω̃I+mωr−ω1)t

 (62)

where, ρ̃F (t) = e−iH
eff
F,CT tρ̃F (0) eiH

eff
F,CT t. In the above expression, the coefficients A and B are

defined exactly as in Eq.(12).
Thus, both single and bimodal formulations of Floquet theory lead to similar signal expres-

sions, thus proving their equivalence in the analysis of the time-evolution problem.

C3. Role of higher order corrections in contact transformation based formalism

In Figure 3, analytic simulations emerging from Floquet theory (incorporating corrections to
2nd order) are compared with numerical simulations in the top row. The differences arising
thereof, especially with the amplitude of the RF field approaching the spinning frequency, can
be attributed to the role of higher order corrections. In the analytic simulations in panel
B1, diagonal corrections to fourth order are incorporated, while, in the analytic simulations
depicted in panel B2, diagonal corrections to second order resulting from two transformations
are employed to match the results obtained from numerical methods.
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Figure 3: In the simulations depicted, the time-domain signal (panels A1-A2 and B1-B2)
under CW decoupling is illustrated under varying spinning frequencies and RF amplitudes (i.e.
νr = 20 kHz; ν1 = 50 kHz (panels A1, B1, C1) and νr = 50 kHz ν1 = 20 kHz (panels A2,
B2, C2)). The simulations from numerical methods (indicated through black solid line) are
compared with analytic simulations based on Floquet theory with i) effective Hamiltonians
incorporating corrections upto order λ2 (indicated in maroon in panels A1, A2), ii) effective
Hamiltonians incorporating corrections upto order λ4 (indicated in blue in panels B1, B2) and
order λ2 from two transformations (indicated in red in panels C1, C2). All other parameters
are similar to those employed in the simulations the main article.
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