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Figure S1: Finite size effect examined: (a) snapshots of simulation systems with smaller size
(L ≈ 4.6nm) and larger size (L ≈ 9.2nm), (b) radius of gyration (< Rg >) as a function of
C60 wt% for the smaller and larger simulation systems, (c) translational diffusion coefficient
(DT) as a function of C60 wt% influenced by simulation size, (d) MSD(t = 100ps) of TPU
for soft and hard segments with respect to C60 wt%, (e) The ratio of TPU density between
the larger system (L ≈ 9.2nm) and the smaller system (L ≈ 4.6nm).
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Figure S2: Changes in (a) density of TPU/C60 composites and (b) potential energy during
the first 200 ps of NPT run (P=0.1 MPa, T=380 K).
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Figure S3: Radius of gyration (Rg) of TPU chain as a function of simulation time (P=0.1
MPa, T=400 K). The theoretical value of Rg is given by the dashed line.
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Figure S4: Determination of glass transition temperature Tg by changes in (a) specific volume
(ν) and (b) non-bond energy (Enon-bond) versus temperature (T ).
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Figure S5: Specific volume (ν) under NPT equilibrium and during cooling, as a function of
temperature (T ). Glass transition temperature (Tg) measured using cooling is significantly
higher compared to simulation technique of NPT equilibrium.
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Figure S6: Comparison of glass transition temperature increment (∆Tg) from current MD
simulation study and literature experiments. Polymer/C60 composite details shown in Table
S1.

Table S1: Polymer/C60 composite systems in literature experiments

Index Polymer/C60 Systema Molecular Weight of Polymer References
– TPU/C60 Mw=Mn=3494 g/mol Current Simulation
Exp. [1] PMMA/C60 Mw=254.7 kg/mol [1]1

Exp. [2] PS/C60 Mw=152 kg/mol [2]2

Exp. [3] PIB/C60 Mn=25000 g/mol [3]3

Exp. [4] PS/C60 Mw=2.2 kg/mol [4]4

Exp. [5] PS/C60 Mn=2727 g/mol [5]5

Exp. [6] PU/C60 Mn=∼24000 g/mol [6]6

Exp. [7] TPU/C60 unknown [7]7

a polymer abbreviation: TPU - thermoplastic polyurethane; PMMA - poly(methyl methacry-

late); PS – polystyrene; PIB – polyisoprene; PU – polyurethane;
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Figure S7: (a) Mean squared displacement (MSD(t)) versus time t for neat TPU. (b) MSD(t)
for TPUs with varying wt% of C60 at 400K.
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Figure S8: Time decay of orientational autocorrelation function C(t) for bond vector of
simulated TPU chains (P=0.1 MPa, T=400 K).
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Figure S9: (a) Time dependence of radius of gyration (Rg) of TPU chains within intermediate
to long-time range. (b) Averaged radius of gyration (⟨Rg⟩) as a function of C60 wt%.
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(7) Kanbur, Y.; Tayfun, Ü. Development of multifunctional polyurethane elastomer com-

posites containing fullerene: Mechanical, damping, thermal, and flammability behaviors.

Journal of Elastomers & Plastics 2018, 51, 262 – 279.

9


