Highly efficient MoS₂/WS₂ heterojunction for CO₂ reduction reaction: strong electronic transmission Pengjie Fu,^{#,a} Ying Xu,^b Pingji Ge,^a Xiaolong Li,^a Jueming Yang,^a Guixian Ge,^{*,a} Xiaodong Yang,^{*,a} ^a Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology/College of Science, Shihezi University, Shihezi 832003, Xinjiang, China ^b College of Foreign Languages, Shihezi University, Shihezi 832003, China ## **Corresponding Author** *Email: geguixian@126.com (G.X.G.) *Email: yangxiaodong1209@hotmail.com (X.D.Y.) Fig.S1 The structure and energy of different stacking modes. $\textbf{Fig.S2} \ \, \textbf{Adsorbed} \ \, \textbf{CO}_2 \ \, \textbf{molecule} \ \, \textbf{on} \ \, \textbf{MoS}_2 / \textbf{WS}_2 \ \, \textbf{surface}.$ Fig.S3 The optimized structure diagram of S atom in different intermediate states. **Fig.S4** Energy variation of different adsorbed metal structures during the whole reaction process. (Mn, Fe, Ni, Rh, Ru, Pt). **Fig.S5** Free-energy profiles for CO₂RR on Cu@MoS₂/WS₂.