Supporting Information

A theoretical study on novel orthorhombic group- $I\!VB$ nitride

halides monolayers for photocatalytic overall water splitting

Jiali Wang, ^a Jiajun Lu, ^a Xiuwen Zhao, ^a Guichao Hu, ^a Xiaobo Yuan, ^a Siyun Qi*^a and Junfeng Ren*^{ab}

^a School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.

^b Shandong Provincial Engineering and Technical Center of Light Manipulations & Institute of Materials

and Clean Energy, Shandong Normal University, Jinan 250358, China.

Supporting Figures

Fig. S1 Phonon dispersion curves and phonon DOS for (a) $Hf_2N_2Br_2$, (b) $HfZrN_2Br_2$ and (c) Hf_2N_2ClBr monolayers.

Fig. S2 The total potential energies in the AIMD simulation at 300K for 3 ps.

Fig. S3 The electron localization function (ELF) for (a) $Hf_2N_2Br_2$, (b) $HfZrN_2Br_2$ and (c) Hf_2N_2ClBr monolayers. The values of vertical bar represent the localized level of electrons. The values of 0 and 1 represent low electron density and fully localized electron region, respectively.

Fig. S4 The charge density difference for (a) $Hf_2N_2Br_2$, (b) $HfZrN_2Br_2$ and (c) Hf_2N_2ClBr monolayers. The light purple and green colors represent the charge depletion and accumulation on the surface of 0.006 eÅ⁻³, respectively.

Fig. S5 The plane-averaged electrostatic potentials for (a) $Hf_2N_2Br_2$, (b) $HfZrN_2Br_2$ and (c)

Hf₂N₂ClBr monolayers. The insets show the electrostatic potential difference.

Fig. S6 The band edge positions for (a) $Hf_2N_2Br_2$, (b) $HfZrN_2Br_2$, and (c) Hf_2N_2ClBr monolayers under uniaxial strain along different directions, and the corresponding energies are shown in (d), (e), and (f).

Fig. S7 The external potentials provided by (a) U_e and (b) U_h at different pH for Hf₂N₂Br₂, Janus HfZrN₂Br₂ and Janus Hf₂N₂ClBr monolayers, respectively.

Fig. S8 The different adsorption sites considered for $Hf_2N_2Br_2$, Janus $HfZrN_2Br_2$ and Janus Hf_2N_2ClBr monolayers, respectively. Here, Tn (n=1-5) are the five different adsorption sites. And the gray colors represent different adsorbates (H^{*}, OH^{*}, O^{*} and OOH^{*}).

Fig. S9 The corresponding energy difference for (a) H^* , (b) OH^* , (c) O^* and (d) OOH^*

along different migration paths.

Species	View	$Hf_2N_2Br_2$	HfZrN ₂ Br ₂	Hf ₂ N ₂ ClBr
H*	Top view			
	Side view			
OH*	Top view			
	Side view		××××	
O*	Top view			
	Side view	××××		

Fig. S10 The top view and side view of relaxed structure after adsorption of H^* , OH^* , O^*

and OOH^{*}, respectively.

Supporting Tables

Table S1 The calculated band gaps (E_g^{PBE} and E_g^{HSE}) using PBE and HSE methods, formation energy (E_f), work function (W_1 and W_2), electrostatic potential difference (ΔW), valence band potential (E_{VBM}), conduction band potential (E_{CBM}) for Hf₂N₂Br₂, Janus HfZrN₂Br₂ and Janus Hf₂N₂ClBr monolayers.

matorial	$E^{PBE}_{\ g}$	$E^{HSE}_{\ g}$	E_f	W_1	W_2	ΔW	E_{VBM}	Есвм
material	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
$Hf_2N_2Br_2$	2.12	3.11	-3.39	2.70	2.70	0	-6.11	-3.00
$HfZrN_2Br_2$	1.93	2.97	-3.31	2.89	3.05	0.16	-6.41	-3.44
Hf_2N_2CIBr	2.14	3.13	-3.49	2.53	2.78	0.25	-6.22	-3.09

Table S2 The Bader charge analysis for (a) $Hf_2N_2Br_2$, (b) $HfZrN_2Br_2$ and (c) Hf_2N_2CIBr

monolayers.	Negative and	positive	values	represent	charge	loss and gain.
,	0					0

Hf	$_2N_2Br_2$	$HfZrN_2Br_2$		$HfZrN_2Br_2$		Hf ₂	Hf_2N_2ClBr	
Br2	+0.603	Br2	+0.615	Cl1	+0.662			
Hf2	-2.256	Zr1	-2.252	Hf2	-2.315			
N2	+1.653	N2	+1.640	N2	+1.657			
N1	+1.653	N1	+1.644	N1	+1.658			
Hf1	-2.256	Hf1	-2.253	Hf1	-2.271			
Br1	+0.603	Br1	+0.606	Br1	+0.609			

material	surface	T1	Т2	Т3	T4	T5
$Hf_2N_2Br_2$	Br	-0.48	-0.83	-0.33	-1.26	-0.90
Hf7rN-Br-	Br(top)	-0.72	-0.38	-0.92	-0.62	-0.66
	Br(bottom)	-0.88	-0.65	-0.49	-0.53	-0.54
Hf_2N_2CIBr	Cl(top)	-0.66	-0.33	-0.84	-0.58	-0.68
	Br(bottom)	-0.73	-0.44	-0.62	-0.68	-0.63

Table S3 The adsorption energy of H* adsorbed at different adsorption sites.

Table S4 The adsorption energy of OH^{*} adsorbed at different adsorption sites.

material	surface	T1	T2	Т3	T4	T5
$Hf_2N_2Br_2$	Br	-1.40	-0.33	-0.33	-0.26	-0.90
	Br(top)	-1.02	-0.38	-0.66	-0.72	-0.66
HfZrN ₂ Br ₂	Br(bottom)	-0.98	-0.45	-0.49	-1.13	-0.54
Hf_2N_2CIBr	Cl(top)	-0.16	-0.13	-0.14	-0.98	-0.68
	Br(bottom)	-0.13	-0.44	-0.32	-0.78	-0.63

Table S5 The adsorption energy of O^{*} adsorbed at different adsorption sites.

material	surface	T1	T2	Т3	T4	T5
$Hf_2N_2Br_2$	Br	-0.70	-0.33	-1.66	-0.56	-0.90
$HfZrN_2Br_2$	Br(top)	-1.02	-0.38	-1.23	-1.00	-0.66
	Br(bottom)	-0.98	-0.45	-0.49	-1.03	-0.54
Hf_2N_2CIBr	Cl(top)	-0.76	-0.53	-0.74	-1.01	-0.68
	Br(bottom)	-0.63	-0.44	-0.32	-0.98	-0.63

material	surface	T1	T2	Т3	T4	T5
$Hf_2N_2Br_2$	Br	-2.01	-0.33	-2.86	-0.86	-0.90
Hf7rN _a Bra	Br(top)	-1.02	-0.38	-1.76	-1.32	-0.66
	Br(bottom)	-0.98	-0.45	-0.49	-1.13	-0.54
Hf.N.CIBr	Cl(top)	-0.76	-1.13	-1.14	-1.68	-0.68
Hf ₂ N ₂ ClBr	Br(bottom)	-1.13	-0.44	-1.32	-0.98	-0.63

Table S6 The adsorption energy of OOH* adsorbed at different adsorption sites.

Calculation details

The photocatalytic water splitting reactions happen in solution, so the calculations are performed using VASPsol considering the solvation effect. The equation is as follows:

 $E_{sol} = E_{tot;sol} - E_{tot;vac}$

where $E_{tot;sol}$ and $E_{tot;vac}$ represent the vacuum state energy and the solvation state energy, respectively. The details are shown as follows:

_	E _{tot;sol}	E _{tot;vac}	E _{sol}
$Hf_2N_2Br_2$	-50.149	-50.143	-0.006
$HfZrN_2Br_2$	-50.326	-50.249	-0.077
Hf_2N_2CIBr	-50.841	-50.830	-0.011

Since the geometry is periodic in the (x, y) plane, the planar average is considered as a function of the z-coordinate only. Based on the three-dimensional electron charge density, we can obtain the average one-dimensional electrostatic potential V(z) by calculating the planar average function \overline{f}^{1} :

$$\overline{f}(z) = \frac{1}{S} \int_{S} V(r) dx dy$$

where S represents the area of a unit cell in the x-y plane.

The external potentials provided by the photogenerated electrons (U_e) and photogenerated holes (U_h) in the photocatalyst are defined as²:

$$U_{e} = \left| E_{CBM} - E_{H^{+}/H_{2}} \right| / e$$
$$U_{h} = \left| E_{VBM} - E_{H^{+}/H_{2}} + \Delta W \right| / e$$

In an aqueous solution, the photocatalytic water splitting reaction is composed by the following two half-reactions. According to the approach proposed by Norskov, the Gibbs free energy difference (ΔG) is described as³⁻⁷:

 $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S - eU + 0.059 \times pH$

where ΔE , ΔE_{ZPE} , and ΔS represent the energy difference of adsorption, zero-point energy and entropy, respectively. The energies of ΔE and ΔE_{ZPE} are obtained by DFT calculations, and the value for ΔS is obtained via the standard thermodynamic data. Furthermore, *T*, *e* and *U* are the system temperature (298 K), the charge of electron and the potential relative to the reduction potential of H⁺/H₂. We calculate ΔG for the three monolayers using the 3×3×1 supercell, which avoids the interaction of adjacent adsorbed atoms.

References:

- 1. M. Peressi, N. Binggeli and A. Baldereschi, J. Phys. D: Appl. Phys., 1998, 31, 1273.
- 2. Y. Yu, J. Zhou, Z. Guo and Z. Sun, *ACS Appl. Mater. Interfaces*, 2021, **13**, 28090-28097.
- 3. X. Gao, Y. Zhou, Y. Tan, B. Yang, Z. Cheng and Z. Shen, *Int. J. Hydrog. Energy*, 2019, **44**, 14861-14868.
- 4. S. Qi, Y. Fan, J. Wang, X. Song, W. Li and M. Zhao, *Nanoscale*, 2020, **12**, 306-315.
- Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang, H. Zhang, X. Yan, G. Liu, Y. Zhao, J. Liu, S. Wei, L. Song, Q. Wu, B. Ge, L. Zhang, K. Wang, X. Wang, C. R. Chang and X. Yao, *J. Am. Chem. Soc.*, 2022, 144, 2171-2178.
- Y. Guo, L. Mao, Y. Tang, Q. Shang, X. Cai, J. Zhang, H. Hu, X. Tan, L. Liu, H. Wang, T. Yu and J. Ye, *Nano Energy*, 2022, 95, 107028.
- S. Qi, J. Wang, X. Song, Y. Fan, W. Li, A. Du and M. Zhao, *Sci. Bull.*, 2020, 65, 995-1002.