Supporting Information

Super Asymmetric Cross Antenna Structure with Tunable Dual-Frequency Resonance

Haiyan Xu^{a, b}, and Jianping Wang^{a, b*}

^a Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics

Laboratory, CAS Research / Education Center for Excellence in Molecular Sciences,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Author to whom correspondences should be addressed.

Tel: (+86)-010-62656806; *Fax:* (+86)-010-62563167; *E-mail: jwang@iccas.ac.cn.*

S1. Parameter Optimization

The tip of nanorod is set as a taper and the sharp angle of taper is called θ in the super asymmetric cross antenna structure (SACA). The angle θ and the width of nanorod (W) are taken into account in order to better understand the influence of the structural parameters of the SACA on the dual-frequency resonance. In order to study the effect of single variable, W is adjusted by changing the height of taper (h) to ensure an unchanged θ . Similarly, θ is adjusted by changing h to ensure an unchanged W. **Figure S1** shows the effect of θ and W on the location of the dual-frequency resonance. In Figure S1a, at W = 0.18 μ m, when θ increases, the location of the low-frequency mode remains basically unchanged at 1644 cm⁻¹, whereas the high-frequency mode is red-shifted from 3277 cm⁻¹ to 3166 cm⁻¹. Throughout the entire range of θ , in order to achieve a better electric field enhancement (see Section 3.1.1 for details) and desired frequency range (~3300 cm⁻¹), the value of θ should be set to 62°. As shown in Figure S1b, at $\theta = 62^{\circ}$, the locations of two resonances remain roughly unchanged as W increases. However, by considering the electric field enhancement of the dualfrequency resonance (see Section 3.1.1) and the effect of W on the actual machining difficulty, the preferred value of W is 0.18 μ m. In summary, W and θ are optimized to be 0.18 μ m and 62° respectively.

Figure S1. The spectral response of the SACA obtained by adjusting the sharp angle of taper (θ) and the width of nanorod (W). (a) Transmission spectra by regulating θ and at fixed W. Considering the actual machining difficulty, the preferred value of W is set to 0.18 µm. (b) Transmission spectra by regulating W and at fixed θ . Black dashed frame is a drawing of partial enlargement to show the change of the high-frequency mode.

S2. The Effect of L1-L3 dimer

The transmission spectra of a single L₁, a single L₃ and an L₁-L₃ dimer are shown in **Figure S2a**, in which the polarized electric field of incident light is along the y-axis, and the structural parameters of L₁, L₃ dimer and L₁-L₃ dimer are the same as those of the super asymmetric cross antenna structure (SACA). It is found that the singlefrequency mode of L₁ is located at $v_1 = 1644$ cm⁻¹ and that of L₃ is at $v_4 = 3501$ cm⁻¹. A dual-frequency resonance is generated as L₁ and L₃ are approaching and coupled to each other to form an L₁-L₃ dimer, which are located at $v_2 = 1677$ cm⁻¹ and $v_3 = 3466$ cm⁻¹ respectively. Compared with the case of a single nanorod, the location of the L₁-L₃ dimer is shifted due to the interaction of L₁ and L₃. The electric field distribution of the L_1-L_3 dimer is shown in **Figure S2b** and **S2c**. For the low-frequency mode (1644 cm⁻¹), the electric field of the L_1-L_3 dimer is mainly distributed at the tip of L_1 , and a small amount of that exists at the tip of L_3 . For the high-frequency mode (3466 cm⁻¹), the situation is opposite.

Figure S2. Calculated transmission spectra and electric field distribution for three types of nanorods. (a) Transmission spectra of a single L_1 , a single L_3 and an L_1 - L_3 dimer with $v_1 = 1644$ cm⁻¹, $v_2 = 1677$ cm⁻¹, $v_3 = 3466$ cm⁻¹ and $v_4 = 3501$ cm⁻¹. (b-c) The electric field distribution of the L_1 - L_3 dimer.

S3. The effect of L2-L2 dimer

Figure S3 shows the influence of the orthogonal gap spacing of the L₂-L₂ dimer (g) on the microcavity structure of the SACA. As shown in **Figure S3a**, the location of the low-frequency mode remains unchanged and that of the high-frequency mode is shifted from $v_2 = 3269 \text{ cm}^{-1}$ to $v_3 = 3363 \text{ cm}^{-1}$ as g increases. As shown in **Figure S3b**-e and also in **Figure 6e-f**, the electric field distribution of the low-frequency mode is mainly concentrated on the tip of L₁ with a weak contribution showing at the edge of the L₂-L₂ dimer.

Figure S3. The influence of the orthogonal gap spacing of the L₂-L₂ dimer (g) on the microcavity structure of the SACA. (a) Transmission spectra of three different structural parameters with $v_1 = 1644 \text{ cm}^{-1}$, $v_2 = 3269 \text{ cm}^{-1}$ and $v_3 = 3363 \text{ cm}^{-1}$. (b-c) The electric field distribution of two different structural parameters.