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S1. Parameter Optimization

The tip of nanorod is set as a taper and the sharp angle of taper is called 0 in the
super asymmetric cross antenna structure (SACA). The angle 6 and the width of
nanorod (W) are taken into account in order to better understand the influence of the
structural parameters of the SACA on the dual-frequency resonance. In order to study
the effect of single variable, W is adjusted by changing the height of taper (h) to ensure
an unchanged 0. Similarly, 0 is adjusted by changing h to ensure an unchanged W.
Figure S1 shows the effect of 6 and W on the location of the dual-frequency resonance.
In Figure S1a, at W = 0.18 um, when 0 increases, the location of the low-frequency
mode remains basically unchanged at 1644 cm™!, whereas the high-frequency mode is
red-shifted from 3277 cm™! to 3166 cm™'. Throughout the entire range of 0, in order to
achieve a better electric field enhancement (see Section 3.1.1 for details) and desired
frequency range (~3300 cm™!), the value of 0 should be set to 62°. As shown in Figure
S1b, at 6 = 62°, the locations of two resonances remain roughly unchanged as W
increases. However, by considering the electric field enhancement of the dual-
frequency resonance (see Section 3.1.1) and the effect of W on the actual machining
difficulty, the preferred value of W is 0.18 um. In summary, W and 6 are optimized to
be 0.18 um and 62° respectively.
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Figure S1. The spectral response of the SACA obtained by adjusting the sharp angle of
taper (0) and the width of nanorod (W). (a) Transmission spectra by regulating 6 and at
fixed W. Considering the actual machining difficulty, the preferred value of W is set to
0.18 um. (b) Transmission spectra by regulating W and at fixed 0. Black dashed frame
is a drawing of partial enlargement to show the change of the high-frequency mode.
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S2. The Effect of L1-L3 dimer

The transmission spectra of a single L1, a single L3 and an L;-L3 dimer are shown
in Figure S2a, in which the polarized electric field of incident light is along the y-axis,
and the structural parameters of L1, L3 dimer and Li-L3 dimer are the same as those of
the super asymmetric cross antenna structure (SACA). It is found that the single-
frequency mode of L is located at vi = 1644 cm™'and that of L3 is at v4 = 3501 cm™. A
dual-frequency resonance is generated as L; and L3 are approaching and coupled to
each other to form an Li-L3 dimer, which are located at v; = 1677 cm™and v; = 3466
cm’! respectively. Compared with the case of a single nanorod, the location of the L;-
L3 dimer is shifted due to the interaction of L1 and Ls. The electric field distribution of
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the Li-L3 dimer is shown in Figure S2b and S2¢. For the low-frequency mode (1644
cm™), the electric field of the Li-Ls dimer is mainly distributed at the tip of L1, and a
small amount of that exists at the tip of L3. For the high-frequency mode (3466 cm™),
the situation is opposite.
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Figure S2. Calculated transmission spectra and electric field distribution for three types
of nanorods. (a) Transmission spectra of a single L1, a single L3 and an Li-L3 dimer
with v; = 1644 cm™, v2 = 1677 ecm™!, v3 = 3466 cm™ and v4 = 3501 cm™. (b-¢) The
electric field distribution of the L;-L3 dimer.

S3. The effect of L2-L2 dimer

Figure S3 shows the influence of the orthogonal gap spacing of the L,-Lo dimer
(g) on the microcavity structure of the SACA. As shown in Figure S3a, the location of
the low-frequency mode remains unchanged and that of the high-frequency mode is
shifted from v2 = 3269 cm™ to v3 = 3363 cm™! as g increases. As shown in Figure S3b-
e and also in Figure 6e-f, the electric field distribution of the low-frequency mode is
mainly concentrated on the tip of L; with a weak contribution showing at the edge of
the L>-L> dimer.
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Figure S3. The influence of the orthogonal gap spacing of the Lo-L, dimer (g) on the
microcavity structure of the SACA. (a) Transmission spectra of three different
structural parameters with v; = 1644 cm™', v2 = 3269 cm™ and v3 = 3363 cm™'. (b-¢) The
electric field distribution of two different structural parameters.



