Unveiling the Intersystem Crossing Dynamics in N-Annulated Perylene Bisimides

Jeswin Sunny^{‡[a]}, Ebin Sebastian^{‡[a]}, C. Suvarna Sujilkumar^{‡[a]}, Frank Würthner^[b], Bernd Engels^{*[c]} and Mahesh Hariharan^{*[a]}

^[a] School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram 695551, Kerala, India.

^[b] Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

^[c] Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany.

Supplementary Information (SI)

Contents

Section 1: Materials and Methods	. 4
Section 2: Synthesis and Characterization	. 5
Section 3: Tables	. 6

 Table S1: Solvent depenadent fluorescence quantum yield measurements of Br-NPBI and NPBI......6

Table	S6 :	Camparision	of	Singlet	excited	state	computed	using	TD-DFT	and	TDA-DFT	at	CAM-
B3LYP	/aug	g-cc-pVDZ leve	els o	of theor	<i></i>								7

Table S7: The computed spin-orbit coupling values for PBI, Br-PBI, NPBI, and Br-NPBI computed at theCAM-B3LYP/aug-cc-pVDZ levels of theory
Section 4: Figures
Figure S1: Optimized structures of a) PBI b) Br-PBI c) NPBI and d) Br-NPBI. ⁵ 8
Figure S2: Normalized absorptance and excitation spectra of Br-NPBI in toluene
Figure S3: Normalized emission spectra of a) NPBI and Br-NPBI and b) PBI and Br-PBI in toluene 9
Figure S4 : a) nsTA (λex = 532 nm) spectrum (left), EAS (center), and the relative population profile of the triplet excited state (right) of NPBI in toluene
Figure S5 : nsTA (λex = 532 nm) spectrum of NPBI after oxygen purging and b) Single wavelength decay kinetics at 570 nm upon nitrogen and oxygen purging
Figure S6 : a) Transient kinetic decay of $[Ru(bpy)_3]^{2+}$ at 370 nm b) The growth profile of (β -carotene)* formed in the mixture of $[Ru(bpy)_3]^{2+}$ and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from $[Ru(bpy)_3]^{2+}$ to β -carotene c) The growth profile of (β -carotene)* formed in the mixture of NPBI and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from NPBI to β -carotene
Figure S7: a) nsTA (λ_{ex} = 532 nm) spectrum of Br-NPBI after oxygen purging and b) Single wavelength decay kinetics at 570 nm upon nitrogen and oxygen purging
Figure S8 : a) Transient kinetic decay of $[Ru(bpy)_3]^{2+}$ at 370 nm b) The growth profile of $(\beta$ -carotene)* formed in the mixture of $[Ru(bpy)_3]^{2+}$ and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from $[Ru(bpy)_3]^{2+}$ to β -carotene c) The growth profile of $(\beta$ -carotene)* formed in the mixture of Br-NPBI and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from Br-NPBI to β -carotene. 11
Figure S9 : a) Absorptaion spectra of DPBF and Br-NPBI mixture on different irradiation time b) Absoprtion spectra of DPBF and Rose Bengal on different irradiation time c) Absorbance-Time plot of DPBF, DPBF with Rose Bengal, and DPBF with Br-NPBI transfer from Br-NPBI
Figure S10: a) nsTA (λ_{ex} = 532 nm) spectrum of Br-PBI after nitrogen purging, b) oxygen purging12
Figure S11: a) Gated emission spectrum of Br-NPBI at 77K and b) decay trace at 600 nm12
Figure S12: a) Gated emission spectrum of NPBI at 77K and b) decay trace at 597 nm13
Figure S13: Energy level diagram representing the excitation energies
Figure S14: Energies for S ₀ , S ₁ , T ₁ , and T ₂ states relative to the ground state energy at the ground state equilibrium geometry $R(S_0)$. The calculations were performed for the equilibrium geometries of S ₀ , S ₁ , and T ₂ : a) PBI , b) Br-PBI , c) NPBI and d) Br-NPBI . For the S ₀ \rightarrow S _n transitions TD-DFT was employed while TDA for used for S ₀ \rightarrow T _n excitation energies. For all using at the CAM-B3LYP/aug-cc-pVDZ level of theory.
Figure S15: Energies for S_0 , S_1 , T_1 , and T_2 states relative to the ground state energy at the ground state

equilibrium geometry $R(S_0)$. The calculations were performed for the equilibrium geometries of S_0 , SI 2

References	35
Section 5: Cartesion Coordinates of systems15-	34
theory	14
while TDA for used for $S_0 \rightarrow T_n$ excitation energies. For all using at the CAM-B3LYP/def2-SVP level	of
S ₁ , and T ₂ : a) PBI , b) Br-PBI , c) NPBI and d) Br-NPBI . For the S ₀ \rightarrow S _n transitions TD-DFT was employed	ed

Section 1: Materials and Methods

All chemicals were obtained from commercial suppliers and used as received without further purification. All reactions were carried out in oven-dried glassware and whenever required, were under dry nitrogen in dried, anhydrous solvents using standard gastight syringes, septa and cannulae. Solvents were dried and distilled by following the standard procedures. TLC analyses were conducted on aluminium plates coated with silica gel 60 F254 (0.25 mm, Merck), and short and long wavelength UV lamps TLC plates were used to observe TLC plates. Column chromatography was executed using silica gel of 200-400 mesh utilizing an appropriate solvent polarity correlated with the TLC mobility noticed for each particular molecule. Yields are recorded for chromatographically and spectroscopically homogenous substances. 500 MHz Bruker avance DPX spectrometer was used for recording ¹H and ¹³C NMR spectra. 1,1,1,1-tetramethyl silane (TMS) was used as Internal standard for ¹H and ¹³C NMR. High-resolution mass spectra (HRMS) were recorded on Thermo scientific Q exactive mass spectrometer utilizing the atmospheric pressure chemical ionization (APCI, positive mode) technique. Photophysical measurements of the compounds were performed in a cuvette of 3 mm path length. Absorption and emission spectra were recorded using Shimadzu UV-3600 UV-Vis-NIR and Horiba Jobin Yvon Fluorolog spectrometers, respectively.

1.1 Calculating the rate of Intersystem Crosssing (k_{ISC})

Rate of Intersystem Crossing (k_{ISC}) was calculated using triplet quantum yield (ϕ_T) and decay time constant of singlet ($\tau_{A \rightarrow B}$),¹

$$k_{ISC} = \frac{\phi_T}{\tau_{A \to B}} \tag{1}$$

Where $\tau_{A\to B}$ is the decay time constant of singlet excited state fitted from fsTA and ϕ_T is the triplet quantum yield.

1.2 Calculating the adiabatic energies

To describe the shapes of the potential energy surfaces, adiabatic energies were computed. The energy of the excited state with respect to the minimum energy $E_{S_0}(R(S_0))$, were calculated using the following equations.² More information can be taken from figure S9.

$$\begin{split} &E_{adiab}^{S_0}(\mathsf{R}(\mathsf{T}_2)) = E_{S_0}(\mathsf{R}(\mathsf{T}_2)) - E_{S_0}(\mathsf{R}(\mathsf{S}_0)) \\ &E_{adiab}^{S_1}(\mathsf{R}(\mathsf{T}_2)) = E_{S_1}(\mathsf{R}(\mathsf{T}_2)) - E_{S_0}(\mathsf{R}(\mathsf{S}_0)) \\ &E_{adiab}^{T_2}(\mathsf{R}(\mathsf{T}_2)) = E_{T_1}(\mathsf{R}(\mathsf{T}_2)) - E_{S_0}(\mathsf{R}(\mathsf{S}_0)) \\ &E_{adiab}^{S_0}(\mathsf{R}(\mathsf{S}_1)) = E_{S_0}(\mathsf{R}(\mathsf{S}_1)) - E_{S_0}(\mathsf{R}(\mathsf{S}_0)) \\ &E_{adiab}^{S_1}(\mathsf{R}(\mathsf{S}_1)) = E_{S_1}(\mathsf{R}(\mathsf{S}_1)) - E_{S_0}(\mathsf{R}(\mathsf{S}_0)) \\ &E_{adiab}^{T_2}(\mathsf{R}(\mathsf{S}_1)) = E_{T_1}(\mathsf{R}(\mathsf{S}_1)) - E_{S_0}(\mathsf{R}(\mathsf{S}_0)) \end{split}$$

Section 2: Synthesis and Characterization

Scheme S1: Synthesis scheme for PBI, NPBI, Br-PBI and Br-NPBI.

Synthesis of Br-NPBI:

The compound was synthesized according to the previously reported procedure.^{3,4} To a mixture of **NPBI** (0.44g, $9.2*10^{-4}$ mmol) in CH₂Cl₂ (25 mL), liquid Br₂ was added dropwise with stirring. The reaction mixture was covered with a Teflon cap and continued to stir for 2 hours at room temperature. Complete consumption of starting material indicated in TLC analysis confirms completion of the reaction. Unreacted bromine was quenched using air bubbling and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography using CH₂Cl₂ : Pet ether as eluent. Product concentrated using rotary evaporation was slurried in methanol and further filtration was carried out using Buchner funnel to yield dark red solid (Yield = 91%).

¹**H NMR** (500 MHz, CDCl₃, ppm) δ = 10.21 (d, 1H), 9.00-8.98 (m, 3H), 8.83 (d, 1H), 5.23-5.10 (m, 2H), 4.84 (t, 2H), 2.35-2.24 (m, 4H), 2.14 (s, 2H), 1.96 (t, 4H), 1.38-1.24 (m, 10H), 1.23-0.92 (m, 12H)

¹³C NMR (500 MHz, CDCl₃, ppm) δ = 134.36, 134.16, 132.12, 130.19, 127.33, 124.05, 123.46, 123.08, 121.95, 121.25, 118.58, 118.15, 58.07, 57.91, 46.82, 31.29, 26.82, 25.23, 25.17, 22.42, 13.88, 11.50

HRMS (APCI) *m/z* calculated for C₄₀H₄₀BrN₃O₄ [(M+H)⁺] =706.2275, found: 706.2254

Section 3: Tables

Table S1: Solvent dependent fluorescence quantum yield measurements of Br-NPBI and NPBI.

Fluorescence Quantum Yield ($arPhi_{f}(\%)$)						
	Br-NPBI	NPBI ^a				
Toluene	2.01	68				
Acetone	2.38	61				
Acetonitrile	2.12	62				

 $a\,$ Fluorescence quantum yield was obtained from previously published results

Table S2: Energies for S₀, S₁, T₁, and T₂ states relative to the ground state energy at the ground state equilibrium geometry R(S₀). The calculations were performed for the equilibrium geometries of S₀, S₁, and T₂ for **PBI** at CAM-B3LYP/def2-SVP levels of theory. For the S₀ \rightarrow S_n transitions TD-DFT was employed while TDA for used for S₀ \rightarrow T_n excitation energies.

PBI CAM-B3LYP/	Energy relative to the ground state energy at R(S ₀) in					
def2-SVP	eV					
Geometry	S ₀	S ₁	T1	T ₂		
R(S ₀)	0	2.80	1.67	2.98		
R(S1)	0.19	2.60	1.40	2.97		
R(T ₂)	0.287	2.71	1.50	2.92		

Table S3: Energies for S₀, S₁, T₁, and T₂ states relative to the ground state energy at the ground state equilibrium geometry R(S₀). The calculations were performed for the equilibrium geometries of S₀, S₁, and T₂ for **Br-PBI** at CAM-B3LYP/def2-SVP levels of theory. For the S₀ \rightarrow S_n transitions TD-DFT was employed while TDA for used for S₀ \rightarrow T_n excitation energies.

Br-PBI CAMB3LYP/	Energy relative to the ground state energy at R(S ₀) in					
def2-SVP	eV					
Geometry	S ₀	S ₁	T ₁	T ₂		
R(S ₀)	0	2.79	1.71	2.96		
R(S1)	0.21	2.57	1.43	2.94		
R(T ₂)	0.29	2.68	1.53	2.87		

Table S4: Energies for S₀, S₁, T₁, and T₂ states relative to the ground state energy at the ground state equilibrium geometry R(S₀). The calculations were performed for the equilibrium geometries of S₀, S₁, and T₂ for **NPBI** at CAM-B3LYP/def2-SVP levels of theory. For the S₀ \rightarrow S_n transitions TD-DFT was employed while TDA for used for S₀ \rightarrow T_n excitation energies.

NPBI CAM-B3LYP/	Energy relative to the ground state energy at R(S ₀) in					
def2-SVP	eV					
Geometry	S ₀	S ₁	T ₁	T ₂		
R(S ₀)	0	2.91	1.87	2.71		
R(S1)	0.16	2.74	1.64	2.71		
R(T ₂)	0.12	2.84	1.76	2.61		

Table S5: Energies for S₀, S₁, T₁, and T₂ states relative to the ground state energy at the ground state equilibrium geometry R(S₀). The calculations were performed for the equilibrium geometries of S₀, S₁, and T₂ for **Br-NPBI** at CAM-B3LYP/def2-SVP levels of theory. For the S₀ \rightarrow S_n transitions TD-DFT was employed while TDA for used for S₀ \rightarrow T_n excitation energies

Br-NPBI CAMB3LYP/	Energy relative to the ground state energy at R(S ₀)					
def2-SVP	in eV					
Geometry	S ₀	S ₁	T ₁	T ₂		
R(S ₀)	0	2.91	1.89	2.69		
R(S1)	0.16	2.74	1.67	2.68		
R(T ₂)	0.12	2.83	1.78	2.59		

Table S6: Camparision of Singlet excited state computed using TD-DFT and TDA at CAM-B3LYP/aug

 cc-pVDZ levels of theory.

S ₁ Energy relative		PBI	Br-PBI			NPBI	Br-NPBI		
ergy at $R(S_0)$ (eV)	TD-DFT	TDA	TD-DFT	TDA	TD-DFT	TDA	TD-DFT	TDA	
$R(S_0)$	2.70	3.01	2.72	2.99	2.82	3.10	2.83	3.09	
$R(S_1)$	2.49	2.85	2.49	2.81	2.64	2.96	2.66	2.95	
R(T ₂)	2.61	2.96	2.60	2.92	2.74	3.04	2.74	3.02	

Table S7: The computed spin-orbit coupling values for **PBI**, **Br-PBI**, **NPBI** and **Br-NPBI** computed at the TD-CAM-B3LYP/aug-cc-pVDZ levels of theory.

SOC (cm ⁻¹)							
States	PBI	Br-PBI	NPBI	Br-NPBI			
S ₁ /T ₁	0	2.70	0	0.01			
S ₁ /T ₂	0	7.93	0.65	0.57			
S ₁ /T ₃	0.03	2.21	0.08	0.06			
S ₁ /T ₄	0.01	12.85	0.04	0.05			
S ₁ /T ₅	0.32	29.43	0.01	0.03			
S ₁ /T ₆	0	2.70	0	0.01			

Section 4: Figures

Figure S1: Optimized structures of a) PBI b) Br-PBI c) NPBI and d) Br-NPBI.⁵

Figure S2: Normalized absorptance spectra and excitation spectra (λ_{ex} = 590 nm) of Br-NPBI in toluene. λ_{max} = 0.41 OD.

Figure S3: Normalized emission spectra of a) NPBI and Br-NPBI and b) PBI and Br-PBI in toluene.

Figure S4: nsTA (λ_{ex} = 532 nm) spectrum (left), EAS (center), and the relative population profile of the triplet excited state (right) o f **NPBI** in toluene.

Figure S5: a) nsTA (λ_{ex} = 532 nm) spectrum of **NPBI** after oxygen purging and b) Single wavelength decay kinetics at 570 nm upon nitrogen and oxygen purging.

Figure S6: a) Transient kinetic decay of $[Ru(bpy)_3]^{2+}$ at 370 nm b) The growth profile of $(\beta$ -carotene)* formed in the mixture of $[Ru(bpy)_3]^{2+}$ and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from $[Ru(bpy)_3]^{2+}$ to β -carotene c) The growth profile of $(\beta$ -carotene)* formed in the mixture of **NPBI** and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from **NPBI** to β -carotene

Figure S7: a) nsTA (λ_{ex} = 532 nm) spectrum of **Br-NPBI** after oxygen purging and b) Single wavelength decay kinetics at 570 nm upon nitrogen and oxygen purging.

Figure S8: a) Transient kinetic decay of $[Ru(bpy)_3]^{2+}$ at 370 nm b) The growth profile of (β -carotene)* formed in the mixture of $[Ru(bpy)_3]^{2+}$ and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from $[Ru(bpy)_3]^{2+}$ to β -carotene c) The growth profile of (β -carotene)* formed in the mixture of **Br-NPBI** and β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from $[Ru(bpy)_3]^{2+}$ to β -carotene at 530 nm confirming the triplet-triplet energy transfer from β -carotene in toluene at 530 nm confirming the triplet-triplet energy transfer from **Br-NPBI** and β -carotene.

Figure S9: a) Absorption spectra of DPBF and **Br-NPBI** mixture on different irradiation time b) Absorption spectra of DPBF and Rose Bengal on different irradiation time c) Absorbance-Time plot of DPBF, DPBF with Rose Bengal, and DPBF with **Br-NPBI**.

Figure S10: a) nsTA (λ_{ex} = 532 nm) spectrum of **Br-PBI** after nitrogen purging and b) oxygen purging.

Figure S11: a) Gated emission spectrum of Br-NPBI at 77K and b) decay trace at 600 nm

Figure S12: a) Gated emission spectrum of NPBI at 77K and b) decay trace at 597 nm

Figure S13: Energy level diagram representing the excitation energies. GS = ground state, ES = excited state, Evert = vertical excitation energy, E_{adia} = adiabatic energy, E_{ZPVE} = zero-point vibrational energy. ^{6,7}

Figure S14: Energies for S₀, S₁, T₁, and T₂ states relative to the ground state energy at the ground state equilibrium geometry R(S₀). The calculations were performed for the equilibrium geometries of S₀, S₁, and T₂: a) **PBI**, b) **Br-PBI**, c) **NPBI** and d) **Br-NPBI**. For the S₀ \rightarrow S_n transitions TD-DFT was employed while TDA for used for S₀ \rightarrow T_n excitation energies. For all using at the CAM-B3LYP/aug-cc-pVDZ level of theory.

Figure S15: Energies for S₀, S₁, T₁, and T₂ states relative to the ground state energy at the ground state equilibrium geometry $R(S_0)$. The calculations were performed for the equilibrium geometries of S₀, S₁, and T₂: a) **PBI**, b) **Br-PBI**, c) **NPBI** and d) **Br-NPBI**. For the S₀ \rightarrow S_n transitions TD-DFT was employed while TDA for used for S₀ \rightarrow T_n excitation energies. For all using at the CAM-B3LYP/def2-SVP level of theory.

Section 5: Cartesian Coordinates of Systems

Br-NPBI Ground State (S₀)

С	2.93415300	2.29051600	-0.05057700
С	1.53271700	2.46840500	-0.05216000
С	0.63817500	1.38408000	-0.05715700
С	1.31414800	0.11165300	-0.06137400
С	2.70427900	-0.09109700	-0.05905500
С	3.52624000	1.04056100	-0.05342100
C	0.57955400	-1.06408800	-0.06800700
С	1.03228100	-2.37773300	-0.06762900
С	2.43458200	-2.56303300	-0.06761400
C	3.23071700	-1.42150100	-0.06220000
С	-0.87001000	1.37023000	-0.05730900
С	-1.53219600	0.09863200	-0.06205300
С	-0.79513600	-1.07147900	-0.06846100
С	-1.74743500	2.46060900	-0.05200700
С	-3.14590000	2.28890900	-0.05116900
С	-3.74441000	1.03729700	-0.05459000
С	-2.92322600	-0.09633500	-0.06010200
С	-3.44552800	-1.43006500	-0.06333600
С	-2.64658600	-2.57019200	-0.06833600
С	-1.24247900	-2.38469600	-0.06825200
С	4.70935600	-1.58626600	-0.06296200
N	5.49774200	-0.42713100	-0.05175300
С	5.00185700	0.88853200	-0.05095000
С	-5.21927100	0.87696200	-0.05476600
N	-5.71365600	-0.43400100	-0.05408300
С	-4.92305400	-1.59927600	-0.06254200
0	5.73841600	1.84937400	-0.04651600
0	5.21965100	-2.68681100	-0.07091300
0	-5.96333100	1.83336800	-0.05413000
0	-5.42896800	-2.70132200	-0.06677000
С	6.97625200	-0.57685800	-0.04426100
С	-7.18629700	-0.63159500	-0.04809400
С	7.48355100	-1.26027500	1.22982000
С	7.47972100	-1.21025800	-1.34710000
С	8.98243500	-1.05315300	-1.55294100
С	6.99887500	-0.60306800	2.51656100
С	-7.83687700	-0.09464700	1.23113900
С	-7.82251300	-0.11818600	-1.34579100
С	-7.21580500	-0.63731300	2.51266600
С	-9.24934200	-0.61344400	-1.55558600
Ν	-0.10258600	-3.19739100	-0.06046100
С	-0.09751900	-4.64108100	-0.11590800
Br	1.00844000	4.29239400	-0.04713500
Н	3.58421700	3.16561900	-0.04642900
Н	2.93250400	-3.53375400	-0.07279700
Н	-1.36869100	3.47721100	-0.04826200
н	-3.79552900	3.16570700	-0.04738600

Н	-3.14304600	-3.54161300	-0.07292300
Н	7.33138400	0.46026200	-0.02619400
Н	-7.29285400	-1.72253300	-0.04036000
Н	7.20831800	-2.32384000	1.21479900
Н	8.58303200	-1.21664000	1.19758300
Н	7.20010800	-2.27238900	-1.37446000
Н	6.95148600	-0.72160700	-2.18207800
Н	9.28080500	-1.43660900	-2.53967500
Н	9.28880500	0.00375400	-1.50059200
Н	9.56406900	-1.60675600	-0.80107900
Н	7.45601900	-1.07816100	3.39692900
Н	7.25129600	0.46844900	2.54279700
Н	5.90741100	-0.68802200	2.63193400
Н	-7.81083400	1.00377400	1.22760200
Н	-8.89767400	-0.38672700	1.19559400
Н	-7.79389000	0.97997500	-1.36316500
Н	-7.19667200	-0.46480400	-2.18436900
Н	-7.76854700	-0.28663000	3.39656400
Н	-7.21870000	-1.73841700	2.52793200
Н	-6.17206100	-0.30809300	2.63083600
Н	-9.62807900	-0.29970600	-2.53939300
Н	-9.30557400	-1.71291100	-1.51280900
Н	-9.94204600	-0.21443100	-0.79993000
Н	-0.98573700	-5.03442200	0.39609700
Н	-0.09429300	-5.01313300	-1.15312200
Н	0.79086700	-5.02906900	0.39992700

Br-NPBI First Singlet Excited State (S₁)

С	2.92411600	2.30687000	-0.04907200
С	1.54301600	2.49005500	-0.04781300
С	0.62163400	1.38080200	-0.05010800
С	1.30238400	0.11916100	-0.05227500
С	2.69986900	-0.08759200	-0.05378900
С	3.52670600	1.04311000	-0.05224100
С	0.57251900	-1.05905600	-0.05430200
С	1.03645200	-2.39440100	-0.05518400
С	2.41314600	-2.58187700	-0.06141900
С	3.21696000	-1.40941200	-0.05798100
С	-0.85263000	1.36819000	-0.05085100
С	-1.52052000	0.10561900	-0.05277800
С	-0.78733900	-1.06590900	-0.05442700
С	-1.75479300	2.47934000	-0.05081500
С	-3.13213900	2.30564600	-0.05268500
С	-3.74281700	1.03810800	-0.05451700
С	-2.91828900	-0.09200900	-0.05493300
С	-3.43312200	-1.42008200	-0.05921700
С	-2.62792900	-2.58809300	-0.06214600
С	-1.24723600	-2.40322400	-0.05555800
С	4.69135200	-1.57927000	-0.06349200
Ν	5.48136500	-0.42910200	-0.05810100
			SI 16

С	4.98886100	0.89340700	-0.05461100
С	-5.20522200	0.88064700	-0.05930400
Ν	-5.69761200	-0.43581500	-0.05934500
С	-4.90661300	-1.59310000	-0.06372400
0	5.73673000	1.85045100	-0.05185800
0	5.18737700	-2.69119800	-0.07078800
0	-5.95785700	1.83513000	-0.06192900
0	-5.39993100	-2.70547200	-0.06872400
С	6.95854800	-0.58433700	-0.05685400
С	-7.16947200	-0.63813900	-0.05718700
С	7.46735400	-1.26455300	1.21828200
С	7.45248100	-1.22667100	-1.35892800
С	8.95569900	-1.08276300	-1.57079200
С	6.99531100	-0.59469000	2.50325300
С	-7.82383200	-0.10070900	1.21991800
С	-7.80247900	-0.12678900	-1.35723100
С	-7.20353600	-0.64036800	2.50309200
С	-9.23036400	-0.61852600	-1.56796700
N	-0.10561200	-3.21442200	-0.04485700
С	-0.09624200	-4.65731400	-0.08987600
Br	1.00997800	4.30705300	-0.04194600
н	3.58185900	3.17633100	-0.04739000
н	2.92000600	-3.54670400	-0.06980900
Н	-1.37082000	3.49404400	-0.04980500
н	-3.78735600	3.17827700	-0.05314900
Н	-3.13362600	-3.55359000	-0.07035500
н	7.31674300	0.45194400	-0.04532600
Н	-7.27338900	-1.72949100	-0.04859800
Н	7.18190900	-2.32568400	1.21103200
Н	8.56705300	-1.23149100	1.18004400
Н	7.16377500	-2.28659600	-1.38133000
Н	6.92530600	-0.73636400	-2.19360600
н	9.24727100	-1.47110000	-2.55771100
Н	9.27092100	-0.02828600	-1.52214000
Н	9.53556300	-1.63929600	-0.81969700
Н	7,45259100	-1.06797500	3,38462300
Н	7.25681500	0.47476100	2.52045300
н	5.90363900	-0.66881100	2.62415500
Н	-7.79836900	0.99765500	1.21416600
Н	-8.88408000	-0.39482500	1,18304000
н	-7 76960500	0.97117600	-1 37661200
н	-7 17614600	-0 47746400	-2 19379900
н	-7 75877100	-0 29040100	3 38577300
н	-7 20314100	-1 74152100	2 51951300
н	-6 16104800	-0 30752200	2.51551500
H	-9 60613700	-0 30743400	-2 55379200
H	-9 2902/900	-1 71768600	-1 52106200
H	-9 92326200	-0 21437600	-0.81531600
н	-1 012/3500	-5 04518900	0 37454000
н	-0.03499100	-5.03700800	-1.12279600
	0.00 .00100	2.22, 20000	1.122,0000

Br-NPBI Second Triplet Excited State (T₂)

С	2.93030500	2.28661400	-0.04854400
С	1.53685200	2.47993600	-0.04801900
С	0.62971400	1.39436700	-0.05104500
С	1.30857100	0.11791100	-0.05408700
С	2.71770700	-0.10055400	-0.05507800
С	3.54011600	1.02905500	-0.05170300
С	0.58290200	-1.04346500	-0.05670300
С	1.04927100	-2.37460100	-0.05969300
С	2.42866400	-2.58127200	-0.06301600
С	3.24128200	-1.42615700	-0.05921900
С	-0.85926900	1.38349800	-0.05142700
С	-1.52809700	0.10508400	-0.05468900
С	-0.80133500	-1.05057700	-0.05708800
С	-1.74766700	2.47263600	-0.04909800
С	-3.14188400	2.28588500	-0.05030500
С	-3.75904400	1.02907300	-0.05321200
С	-2.93983500	-0.10324100	-0.05611900
С	-3.45960700	-1.42925500	-0.06023600
С	-2.64234100	-2.58292700	-0.06333200
С	-1.26305700	-2.37663600	-0.06012500
С	4.70565900	-1.59455900	-0.06324400
Ν	5.49351100	-0.43524500	-0.05667100
С	5.00079500	0.88463800	-0.05301000
С	-5.22093700	0.87766200	-0.05666200
Ν	-5.71320200	-0.43634500	-0.05839400
С	-4.92300800	-1.60212900	-0.06294200
0	5.74442400	1.84598600	-0.04930700
0	5.21487300	-2.70137100	-0.07026100
0	-5.96947500	1.83598100	-0.05680600
0	-5.42843000	-2.70966300	-0.06683000
С	6.97035800	-0.58549400	-0.05439500
С	-7.18418600	-0.63629100	-0.05672000
C	7.48164500	-1.26429900	1.22067000
С	7.46838300	-1.22592400	-1.35596600
С	8.97085100	-1.07409400	-1.56745000
С	7.00612700	-0.59668600	2.50551100
С	-7.83839100	-0.10300400	1.22229200
С	-7.81804100	-0.11928300	-1.35421300
С	-7.22140000	-0.65187800	2.50316400
С	-9.24502500	-0.61236100	-1.56788400
N	-0.10236200	-3.17697500	-0.05567600
С	-0.10174900	-4.61920000	-0.09420200
Br	1.01907700	4.30342200	-0.04289200
н	3.58751700	3.15750700	-0.04641000
Н	2.92240300	-3.55339100	-0.06948800
Н	-1.3//81000	3.49225400	-0.04655400
			SI 18

Н	-3.79638400	3.16005200	-0.04921700
Н	-3.13459100	-3.55599800	-0.06873100
Н	7.32562100	0.45181900	-0.04243500
Н	-7.28882900	-1.72759300	-0.05237300
Н	7.19915600	-2.32602100	1.21253400
Н	8.58127900	-1.22662300	1.18334900
Н	7.18426500	-2.28692500	-1.37753700
Н	6.93892000	-0.73862000	-2.19098500
Н	9.26528600	-1.46179500	-2.55383200
Н	9.28053800	-0.01790300	-1.51951500
Н	9.55341100	-1.62666900	-0.81546600
Н	7.46511100	-1.06781700	3.38721500
Н	7.26240000	0.47406700	2.52275900
Н	5.91472900	-0.67607100	2.62519100
Н	-7.80834800	0.99526400	1.22230700
Н	-8.89977900	-0.39278000	1.18319200
Н	-7.78674800	0.97876000	-1.36842000
Н	-7.19094000	-0.46504300	-2.19225000
Н	-7.77574000	-0.30445500	3.38747600
Н	-7.22485100	-1.75306000	2.51308600
Н	-6.17754700	-0.32410900	2.62422500
Н	-9.62168800	-0.29664600	-2.55195500
Н	-9.30286100	-1.71187300	-1.52677000
Н	-9.93882200	-0.21377600	-0.81294800
Н	-0.96901900	-5.00352300	0.45815600
Н	-0.15449900	-4.98110400	-1.13397000
Н	0.81738400	-5.00005400	0.36813000

Br-PBI Ground State (S0)

С	2.81600200	1.99524300	-0.11953700
С	1.40799900	2.03654600	-0.12462900
С	0.63306300	0.87733800	-0.01565800
С	1.33921800	-0.37759500	-0.08131100
С	2.75845500	-0.40430000	-0.05416300
С	3.48652400	0.80329200	-0.04515000
С	0.64992100	-1.62317500	-0.21235800
С	1.38013800	-2.80446400	-0.21356700
С	2.77580400	-2.81395600	-0.12355700
С	3.46612200	-1.62432400	-0.05912500
С	-0.83670000	0.82064400	0.15812500
С	-1.51659200	-0.41177400	-0.10760800
С	-0.81228900	-1.62319200	-0.35949600
С	-1.59699900	1.89221900	0.60710600
С	-2.99752900	1.83444100	0.68295600
С	-3.67051700	0.69764700	0.30435900
С	-2.93657000	-0.44530700	-0.08085600
С	-3.63146500	-1.62843800	-0.41157200
С	-2.92798000	-2.76813900	-0.73485600
С	-1.52856500	-2.76542600	-0.69084900
С	4.95241400	-1.65018400	-0.00236300
			SI 19

Ν	5.62053100	-0.42583500	0.02852800
С	4.97374800	0.81407400	-0.00612200
С	-5.15757700	0.67946700	0.34011100
Ν	-5.79534600	-0.50344900	-0.03132500
С	-5.11761300	-1.66871900	-0.41367200
0	5.59037600	1.85636000	-0.00254300
0	5.55826800	-2.69985700	0.01634600
0	-5.78715600	1.65831100	0.67925400
0	-5.71447400	-2.67455000	-0.72984000
С	7.10454400	-0.41407200	0.08717600
С	-7.27924400	-0.55518800	-0.02373800
С	7.63433400	-1.03825800	1.38200300
С	7.71420600	-0.99677600	-1.19360700
С	9.20050200	-0.69301600	-1.34703900
C	7.04294100	-0.42902700	2.64749100
C	-7.85452700	-0.38522700	1.38605800
C	-7.87237300	0.39742400	-1.06891700
C	-7.27863200	-1.35757000	2.40847300
C	-9.34655700	0.13523200	-1.35702500
Br	0.73867600	3,79549900	-0.40236000
H	3 39405800	2 91757500	-0 17144200
н	0.86293000	-3 76013500	-0 28248300
н	3 33805800	-3 74849800	-0 11922600
н	-1 11466900	2 81312700	0.91464100
н	-3 57301000	2.69548500	1 02534200
н	-3 48343800	-3 66863600	-0.99961200
н	-1 00473700	-3 69189800	-0.92162000
н	7 34524900	0.65555400	0 10970400
н	-7 49527500	-1 57946100	-0 35029900
н	7 46750600	-2 12418700	1 36434000
н	8 72/32000	-0.88498200	1 38598900
н	7 5/131/00	-2 081/17200	-1 224/1200
н	7 17050000	-0 56431600	-2 04936500
н	9 56927100	-1 0/537200	-2 321/11/00
н	9.3055300	0 38888500	-2.32141400
н	9.80679700	-1 18698600	-0.57351300
н	7 51/2/200	-0.85450800	2 5/5/0/00
н	7.18752600	0.6525800	2 67628800
н	5 96196200	-0.62156400	2.07028800
н Ц	7 71254600	0.65197000	2.72072700
п	-7.71234000	0.03187000	1.72034700
	-8.94047100	-0.54765100	1.50674000
	-7.72013700	1.43753500	-0.74621000
н	-7.29760100	0.27085100	-2.00090200
п	-7.78070500	-1.24811800	3.38089/00
	-7.39723100	-2.40291000	2.08335400
П	-0.20469900	-1.18369400	2.5/66/400
П	-9.70080400	0.77569700	-2.1//95900
н	-9.52001/00	-0.91155400	-1.65344100
н	-9.98323800	0.34505000	-0.48490600

Br-PBI First Singlet Excited State (S1)

С	2.79272500	2.02887800	-0.01981600
С	1.41082200	2.06345600	-0.09434000
С	0.62033600	0.86348600	-0.03503500
С	1.32963000	-0.37501900	-0.15561000
С	2.75637800	-0.39183800	-0.09976200
С	3.47162600	0.81478900	0.02218500
С	0.64549700	-1.61109400	-0.33326800
С	1.39957100	-2.81288500	-0.41331300
С	2.77405300	-2.81108800	-0.32133100
С	3.46326700	-1.60328600	-0.16547500
С	-0.80931800	0.80854600	0.14515400
С	-1.49197900	-0.41469700	-0.13003000
C	-0.79021100	-1.61269000	-0.42609700
C	-1.58063200	1.89800200	0.64182500
C	-2.95891800	1.84311800	0.71139600
C	-3.64357100	0.69282400	0.31506700
C	-2 91881800	-0 44687200	-0.08261000
C	-3 61363100	-1 62398600	-0 41443100
C C	-2 90831700	-2 77972600	-0 76537500
C	-1 52911400	-2 77991800	-0 75782400
C C	4 94144600	-1 62937700	-0 07401300
N	5 59978800	-0 /0967500	0.07401500
C	1 04688500	0.40507500	0.07040000
C C	4.94088500 E 12200E00	0.82843400	0.11228900
N	-5.12200300	-0 50200200	-0.00228100
C	-5.70328400	-0.50550500	-0.00228100
0	5 56024800	1 87167500	0.21826600
0	5.50024800	2 67040500	0.21820000
0	5.55199500	1 65740700	0.12279100
0	-5.74792900	2.67650600	0.72109000
C C	-5.09266900	-2.07059000	-0.70741700
	7.06076400	-0.59671200	0.17457500
	-7.24667100	-0.55521100	0.02566200
	7.57492000	-1.11955800	1.43143900
	7.73111300	-0.87492700	-1.12947700
	9.22077800	-0.56045400	-1.21268400
	6.94328500	-0.61201500	2.72213400
	-7.80492600	-0.39230800	1.44218600
C	-7.85383600	0.40420500	-1.00818300
C	-7.21610800	-1.3/111100	2.45101400
C	-9.33325600	0.14932100	-1.27529100
Br	0.69090900	3.76474400	-0.50377600
Н	3.37945800	2.94724700	-0.03713400
Н	0.88326500	-3.76416500	-0.52833800
Н	3.35351300	-3.73362600	-0.36702200
Н	-1.07893100	2.78860700	1.00666500
Н	-3.53988900	2.68702800	1.08498600
Н	-3.47857700	-3.67125700	-1.02808200
Н	-1.00351800	-3.69569100	-1.02272000
			SI 21

Н	7.31369300	0.66888800	0.28824900
Н	-7.46953000	-1.57769400	-0.30552000
Н	7.41230100	-2.20097600	1.32357600
Н	8.66376700	-0.96547500	1.48027700
Н	7.56098400	-1.95356800	-1.25216200
Н	7.21279500	-0.37488000	-1.96391600
Н	9.61962200	-0.83265000	-2.20087300
Н	9.41583900	0.51298000	-1.05970400
Н	9.80443700	-1.11591500	-0.46382400
Н	7.38931400	-1.10498800	3.59836200
Н	7.08166200	0.47411600	2.83958800
Н	5.86125700	-0.81236600	2.75294700
Н	-7.65620300	0.64279600	1.77981500
Н	-8.89211800	-0.55296200	1.37899600
Н	-7.69792100	1.44210000	-0.68285300
Н	-7.29352500	0.27921100	-1.94917000
Н	-7.70507500	-1.26731100	3.43076100
Н	-7.33939200	-2.41439700	2.12107800
Н	-6.13991400	-1.19856100	2.60576000
Н	-9.69679600	0.79400600	-2.08887100
Н	-9.51570700	-0.89574600	-1.57246400
Н	-9.95605000	0.35908200	-0.39318700

Br-PBI Second Triplet Excited State (T₂)

С	2.80283100	2.03159300	0.00417100
С	1.41846800	2.08033400	-0.10911900
С	0.60918700	0.88338300	-0.06931200
С	1.33466400	-0.36997600	-0.20478200
С	2.72994900	-0.39168100	-0.12235600
С	3.46851100	0.81960700	0.04597900
С	0.63213900	-1.60699200	-0.42775100
С	1.39822700	-2.79851900	-0.56017600
С	2.78037000	-2.79790200	-0.44931500
С	3.46007500	-1.61039800	-0.22510100
С	-0.80918200	0.83082400	0.11728400
С	-1.50557000	-0.39680300	-0.16913400
С	-0.78512200	-1.60610100	-0.50011500
С	-1.57935800	1.91288000	0.60485800
С	-2.96703600	1.85003900	0.69195000
С	-3.64270100	0.70423600	0.31412400
С	-2.90501400	-0.43289500	-0.10242200
С	-3.62387400	-1.62443600	-0.43351700
С	-2.92276600	-2.77099500	-0.80676300
С	-1.54305600	-2.77025100	-0.82978900
С	4.93600000	-1.63474300	-0.10824800
Ν	5.59201000	-0.42128600	0.10424200

С	4.94037100	0.81815700	0.17205200
С	-5.12484700	0.67786200	0.38690000
Ν	-5.76874800	-0.50379500	0.02432200
С	-5.09751000	-1.66643100	-0.38673900
0	5.55617500	1.85291000	0.32599800
0	5.55115900	-2.67862900	-0.18982600
0	-5.74893600	1.65361300	0.74920400
0	-5.70489400	-2.67385600	-0.69026500
С	7.06926300	-0.41589300	0.24632700
С	-7.25075900	-0.56100800	0.07388300
С	7.53251000	-1.19624600	1.48082800
С	7.75372400	-0.83354000	-1.06117900
С	9.24481900	-0.51637200	-1.09108200
С	6.86725200	-0.74980600	2.77715500
С	-7.78674800	-0.40190000	1.50055600
С	-7.87725800	0.39600300	-0.94787200
С	-7.17748200	-1.37774200	2.50003300
С	-9.35865100	0.13159000	-1.19384600
Br	0.73130200	3.78706100	-0.54233100
Н	3.39382400	2.94750900	0.01836800
Н	0.89232700	-3.74639600	-0.73242100
Н	3.35770000	-3.71913900	-0.53487400
Н	-1.08448600	2.81651700	0.94548100
Н	-3.54538300	2.69856500	1.05946300
Н	-3.49403000	-3.66317900	-1.06523200
Н	-1.02743000	-3.68543000	-1.11447400
Н	7.30029800	0.64270500	0.41511000
Н	-7.47267400	-1.58397900	-0.25277300
Н	7.37556100	-2.27169900	1.31919500
Н	8.61934300	-1.04316300	1.56458200
Н	7.58767500	-1.90519400	-1.23828000
Н	7.25689700	-0.29494500	-1.88460600
Н	9.66923100	-0.74246800	-2.08022700
Н	9.43519800	0.54866000	-0.88330900
Н	9.80925900	-1.10646000	-0.35408800
Н	7.29225600	-1.28220200	3.64063100
Н	7.00033300	0.32986600	2.94836300
Н	5.78527900	-0.95256000	2.77153300
Н	-7.63960100	0.63380000	1.83692700
Н	-8.87374200	-0.56909300	1.45326200
Н	-7.72386000	1.43456900	-0.62354200
Н	-7.32990700	0.27609800	-1.89709400
Н	-7.65278800	-1.27752200	3.48682200
Н	-7.29939300	-2.42151900	2.17114100

Н	-6.10020900	-1.19903400	2.63929000
Н	-9.73843500	0.77519200	-2.00082700
Н	-9.53832600	-0.91417200	-1.49021300
н	-9.96989400	0.33553400	-0.30235300

N-PBI Ground State (S₀)

С	-2.92949000	-2.85834700	-0.09036400
С	-1.52497100	-2.97135900	-0.09405700
С	-0.70970100	-1.83846600	-0.08769000
С	-1.41284600	-0.59571700	-0.07816500
С	-2.80700800	-0.45666700	-0.07266400
С	-3.57727700	-1.62626300	-0.07926300
С	-0.71032000	0.59673100	-0.07159500
С	-1.19602400	1.89463000	-0.05460000
С	-2.60931700	2.02691200	-0.05138600
С	-3.37171400	0.85994500	-0.05956800
С	0.78578300	-1.80096500	-0.08726600
С	1.42563300	-0.52439600	-0.07732700
С	0.66412900	0.63117600	-0.07120900
С	1.65675900	-2.89157000	-0.09330900
С	3.05393800	-2.70820200	-0.08900900
С	3.63868200	-1.44528200	-0.07734000
С	2.81104400	-0.31560700	-0.07103200
С	3.30947600	1.02750700	-0.05743200
С	2.48890300	2.15479900	-0.04953700
С	1.08424100	1.95179600	-0.05389300
С	-4.85478200	0.97054100	-0.05735500
Ν	-5.59697700	-0.21951000	-0.05976000
С	-5.05533500	-1.52115100	-0.07421900
С	5.11046200	-1.26454600	-0.07342400
Ν	5.58659000	0.05463300	-0.05677600
С	4.78385200	1.21375000	-0.05234000
0	-5.76396600	-2.50333200	-0.08029200
0	-5.40756100	2.05080800	-0.05164900
0	5.86927400	-2.20960700	-0.08273700
0	5.27948400	2.32046000	-0.04248500
С	-7.07964400	-0.12385700	-0.05047600
С	7.05680100	0.26980300	-0.04649400
С	-7.61225100	0.52397900	1.23198600
С	-7.60754400	0.50668600	-1.34510100
С	-9.10334300	0.29556600	-1.55315700
С	-7.10369300	-0.13160200	2.51033000

С	7.71280500	-0.27277600	1.22764900
С	7.70160400	-0.22066700	-1.34885800
С	7.08317700	0.24783600	2.51415300
С	9.12161100	0.29674000	-1.55152100
Ν	-0.07643800	2.74062900	-0.03644400
С	-0.11265300	4.18439600	-0.07511300
Н	-3.54853300	-3.75706800	-0.09532600
Н	-1.08493600	-3.97037600	-0.10153400
Н	-3.14150600	2.97955400	-0.04400600
Н	1.26726400	-3.91136600	-0.10117000
Н	3.71775200	-3.57444600	-0.09426000
Н	2.97190800	3.13321400	-0.04108600
Н	-7.39674700	-1.17329400	-0.04557300
Н	7.15012400	1.36176000	-0.02645000
Н	-7.37623500	1.59701600	1.23110000
Н	-8.70944800	0.44032400	1.19885800
Н	-7.36826400	1.57885500	-1.35918800
Н	-7.06151400	0.04890800	-2.18611500
Н	-9.41662200	0.67988600	-2.53498000
Н	-9.36959600	-0.77275800	-1.51403600
Н	-9.70521300	0.81718000	-0.79433700
Н	-7.57778300	0.31486500	3.39677000
Н	-7.31644300	-1.21195900	2.52229600
Н	-6.01604000	-0.00829700	2.62669300
Н	7.70091100	-1.37131800	1.21213200
Н	8.76980100	0.03338400	1.19684800
Н	7.68832200	-1.31883800	-1.37826900
Н	7.07191000	0.12633800	-2.18438900
Н	7.63923700	-0.10525000	3.39504000
Н	7.07176200	1.34865000	2.54131800
Н	6.04357200	-0.09598200	2.62704400
Н	9.50603200	-0.00124500	-2.53804200
Н	9.16234200	1.39637600	-1.49707100
Н	9.81892300	-0.10039400	-0.79909500
Н	0.76539300	4.59142300	0.44388400
Н	-0.12169200	4.56904200	-1.10777100
Н	-1.01068800	4.54677700	0.44276400

N-PBI First Singlet Excited State (S1)

С	-2.91074900	-2.87637200	-0.08457300
С	-1.52554900	-2.99025400	-0.08500400

С	-0.69304200	-1.83223400	-0.07512900
С	-1.40072400	-0.59994700	-0.06483100
С	-2.80145600	-0.45973200	-0.06441400
С	-3.57224100	-1.62982600	-0.07452400
С	-0.70292300	0.59413300	-0.05523400
С	-1.20242100	1.91434400	-0.04260700
С	-2.59073900	2.04759600	-0.04666600
С	-3.35941900	0.84905200	-0.05507700
С	0.76965500	-1.79512100	-0.07488300
С	1.41369700	-0.52838400	-0.06429700
С	0.65610900	0.62860900	-0.05501900
С	1.65979900	-2.90938600	-0.08474600
С	3.03759800	-2.72532500	-0.08404800
С	3.63444900	-1.44702700	-0.07329600
С	2.80552400	-0.31729800	-0.06336600
С	3.29685400	1.01768700	-0.05393000
С	2.46775800	2.17574900	-0.04564300
С	1.08810100	1.97219500	-0.04220500
С	-4.83763400	0.96140000	-0.05889600
N	-5.57953300	-0.22266400	-0.06540200
С	-5.03875400	-1.52899000	-0.07540300
С	5.09477900	-1.27025000	-0.07531600
N	5.56914300	0.05370800	-0.06226000
С	4.76644700	1.20613700	-0.05546700
0	-5.75474200	-2.51040400	-0.08249500
0	-5.38062200	2.05155700	-0.05486100
0	5.86095300	-2.21424100	-0.08644100
0	5.25124500	2.32235400	-0.04870900
С	-7.06153000	-0.12459200	-0.06297800
С	7.03862300	0.27282300	-0.05720900
С	-7.59723300	0.52180800	1.21885400
С	-7.58102400	0.51100800	-1.35847800
С	-9.07746000	0.31006100	-1.57211100
С	-7.09892500	-0.14207100	2.49700800
С	7.69898700	-0.26791900	1.21546400
С	7.67901900	-0.21863700	-1.36133500
С	7.07146700	0.25291300	2.50291800
С	9.10048000	0.29359800	-1.56679600
N	-0.07797300	2.76001300	-0.02361400
С	-0.11434800	4.20289200	-0.05504900
Н	-3.53469400	-3.77165300	-0.09222900
Н	-1.07778400	-3.98553200	-0.09318300
Н	-3.13243500	2.99363700	-0.04515300
Н	1.26300200	-3.92606900	-0.09334600

Н	3.70660100	-3.58751300	-0.09221900
Н	2.96004900	3.14834200	-0.04336900
Н	-7.37961200	-1.17386600	-0.06221600
Н	7.12990700	1.36513900	-0.03862500
Н	-7.35403700	1.59338800	1.22289800
Н	-8.69481100	0.44544200	1.17999500
Н	-7.33436100	1.58163200	-1.37025400
Н	-7.03507000	0.05032400	-2.19795900
Н	-9.38451800	0.69638900	-2.55516100
Н	-9.35094000	-0.75646800	-1.53388800
Н	-9.67866700	0.83576200	-0.81557000
Н	-7.57464700	0.30335100	3.38318400
Н	-7.31753800	-1.22125300	2.50280300
Н	-6.01105900	-0.02582900	2.61877100
Н	7.68688700	-1.36641000	1.20012200
Н	8.75561400	0.03943900	1.18194600
Н	7.66050900	-1.31669600	-1.39072700
Н	7.04859300	0.13143700	-2.19507800
Н	7.63038600	-0.09789600	3.38297300
Н	7.05753900	1.35378800	2.52882000
Н	6.03298200	-0.09349300	2.61834300
Н	9.48096800	-0.00374200	-2.55508200
Н	9.14591600	1.39299100	-1.51006000
Н	9.79830600	-0.10803500	-0.81723200
Н	0.76333400	4.60582200	0.46814800
Н	-0.12176500	4.59345400	-1.08577900
Н	-1.01383100	4.56075200	0.46382100

Br-PBI Second Triplet Excited State (T₂)

С	-2.92788800	-2.85420200	-0.08489300
С	-1.52827900	-2.98340500	-0.08580900
С	-0.70030900	-1.84913900	-0.07675400
С	-1.40809400	-0.60277400	-0.06657200
С	-2.82184500	-0.44845600	-0.06564800
С	-3.59200300	-1.61914800	-0.07475800
С	-0.71310100	0.57596500	-0.05680900
С	-1.21515200	1.88732000	-0.04567600
С	-2.60348600	2.04253400	-0.04649000
С	-3.38351900	0.85858000	-0.05548700
С	0.77627800	-1.81234800	-0.07640300
С	1.42094700	-0.53207900	-0.06594700

С	0.66799300	0.61037100	-0.05656000
С	1.65966900	-2.90391400	-0.08514700
С	3.05119100	-2.70491400	-0.08365900
С	3.65229600	-1.43834300	-0.07296400
С	2.82521400	-0.30752100	-0.06434200
С	3.32167000	1.02597400	-0.05399200
С	2.48289100	2.16952200	-0.04518000
С	1.10414700	1.94520300	-0.04517600
С	-4.85206700	0.97415500	-0.05780300
N	-5.59495200	-0.21581800	-0.06429800
С	-5.05670500	-1.52136700	-0.07484300
С	5.11144500	-1.26609800	-0.07384300
N	5.58434700	0.05638600	-0.06141600
С	4.78115200	1.21578300	-0.05387500
0	-5.77175600	-2.50411500	-0.08192000
0	-5.40383300	2.06064300	-0.05281800
0	5.87569700	-2.21226500	-0.08349900
0	5.27652200	2.32813900	-0.04531100
С	-7.07597900	-0.11883800	-0.06133500
С	7.05259500	0.27498400	-0.05675800
С	-7.61301800	0.52595600	1.22090000
С	-7.59750400	0.51757800	-1.35573300
С	-9.09321000	0.31231800	-1.57018400
С	-7.11410700	-0.13872300	2.49838600
С	7.71355600	-0.26192700	1.21734800
С	7.69457900	-0.22017900	-1.35882700
С	7.08853300	0.26619200	2.50306000
С	9.11435100	0.29566600	-1.56689500
N	-0.07547900	2.71934200	-0.03308600
С	-0.11143700	4.16070200	-0.05826600
Н	-3.55242200	-3.75005700	-0.09233000
Н	-1.09748600	-3.98570000	-0.09376000
Н	-3.13186700	2.99662700	-0.04178800
н	1.27931200	-3.92641900	-0.09344600
Н	3.72021600	-3.56811900	-0.09132600
Н	2.96218600	3.14911100	-0.03963100
Н	-7.39366200	-1.16827900	-0.06151500
Н	7.14320400	1.36740600	-0.04145800
н	-7.36957600	1.59731600	1.22563700
н	-8.71057500	0.44844200	1.18221400
н	-7.35317500	1.58860500	-1.36513700
н	-7.04992500	0.05995700	-2.19585500
н	-9.40180700	0.70001800	-2.55228200
н	-9.36336500	-0.75518100	-1.53441900

Н	-9.69624400	0.83406700	-0.81230300
Н	-7.59043000	0.30489400	3.38521900
Н	-7.33090400	-1.21830300	2.50267000
Н	-6.02637900	-0.02101800	2.61957400
Н	7.69815500	-1.36041900	1.20672600
Н	8.77098700	0.04255600	1.18183900
Н	7.67913100	-1.31832900	-1.38385000
Н	7.06288100	0.12471100	-2.19376800
Н	7.64698700	-0.08213600	3.38447100
н	7.07694000	1.36717300	2.52343300
Н	6.04909500	-0.07672400	2.61993500
Н	9.49625100	-0.00507600	-2.55367100
Н	9.15612800	1.39546900	-1.51519700
Н	9.81349400	-0.09987200	-0.81526100
Н	0.77366200	4.56112700	0.45222000
Н	-0.12024300	4.53058900	-1.09679600
Н	-1.01586500	4.51641700	0.45144300

PBI Ground State (S0)

С	-1.96581100	3.20065500	-0.06982600
С	-2.18082700	1.81613200	-0.07018900
С	-1.12843100	0.91152200	-0.07007900
С	0.20850600	1.41457900	-0.06981100
С	0.41575000	2.82033000	-0.06935500
С	-0.68446300	3.70533700	-0.06903900
С	1.34350800	0.54712800	-0.06991500
С	2.61218900	1.10944500	-0.06968300
С	2.80587800	2.49720400	-0.06928800
С	1.72466500	3.34977300	-0.06866100
С	-1.34350800	-0.54712800	-0.06991500
С	-0.20850600	-1.41457900	-0.06981100
С	1.12843100	-0.91152200	-0.07007900
С	-2.61218900	-1.10944500	-0.06968300
С	-2.80587800	-2.49720400	-0.06928800
С	-1.72466500	-3.34977300	-0.06866100
С	-0.41575000	-2.82033000	-0.06935500
С	0.68446300	-3.70533700	-0.06903900
С	1.96581100	-3.20065500	-0.06982600
С	2.18082700	-1.81613200	-0.07018900
С	1.95692300	4.81858700	-0.06930300
N	0.83604600	5.64817500	-0.06411000

С	-0.48392100	5.17781500	-0.06814000
С	-1.95692300	-4.81858700	-0.06930300
Ν	-0.83604600	-5.64817500	-0.06411000
С	0.48392100	-5.17781500	-0.06814000
0	-1.42783400	5.93761900	-0.06875300
0	3.08051500	5.27474300	-0.07247200
0	-3.08051500	-5.27474300	-0.07247200
0	1.42783400	-5.93761900	-0.06875300
С	1.02926100	7.12024000	-0.05793400
С	-1.02926100	-7.12024000	-0.05793400
С	1.72466500	7.60478200	1.21833000
С	1.68651800	7.59879700	-1.35823300
С	1.58851400	9.10626300	-1.56535800
С	1.04382400	7.14761700	2.50281900
С	-1.72466500	-7.60478200	1.21833000
С	-1.68651800	-7.59879700	-1.35823300
С	-1.04382400	-7.14761700	2.50281900
С	-1.58851400	-9.10626300	-1.56535800
Н	-2.80248900	3.90044600	-0.06982800
Н	-3.20958900	1.45962600	-0.07048100
Н	3.49423600	0.47111000	-0.06983800
Н	3.80870800	2.92636800	-0.06947800
Н	-3.49423600	-0.47111000	-0.06983800
Н	-3.80870800	-2.92636800	-0.06947800
Н	2.80248900	-3.90044600	-0.06982800
Н	3.20958900	-1.45962600	-0.07048100
Н	0.00318600	7.50685000	-0.04525800
Н	-0.00318600	-7.50685000	-0.04525800
Н	2.77713200	7.28906600	1.20843000
Н	1.72314900	8.70500600	1.18382800
Н	2.73722800	7.27809300	-1.38059700
Н	1.18155700	7.08916800	-2.19505900
Н	1.98592100	9.38867800	-2.55124000
Н	0.54411300	9.45340700	-1.51607100
Н	2.16231200	9.66651600	-0.81245000
Н	1.53256600	7.58731200	3.38457100
Н	-0.01730100	7.44110100	2.52402600
Н	1.08637900	6.05387300	2.62001700
Н	-2.77713200	-7.28906600	1.20843000
Н	-1.72314900	-8.70500600	1.18382800
н	-2.73722800	-7.27809300	-1.38059700
Н	-1.18155700	-7.08916800	-2.19505900
н	-1.53256600	-7.58731200	3.38457100
Н	0.01730100	-7.44110100	2.52402600

Н	-1.08637900	-6.05387300	2.62001700
Н	-1.98592100	-9.38867800	-2.55124000
Н	-0.54411300	-9.45340700	-1.51607100
Н	-2.16231200	-9.66651600	-0.81245000

PBI First Singlet Excited State (S1)

С	-1.98733200	3.18162200	-0.06988000
С	-2.20403400	1.81942200	-0.07036000
С	-1.12446100	0.89359700	-0.07036700
С	0.20635100	1.39802700	-0.07012800
С	0.41484800	2.81043500	-0.06958200
С	-0.68361200	3.69039600	-0.06918200
С	1.33475800	0.53067700	-0.07023900
С	2.63590400	1.10496300	-0.07000800
С	2.82205300	2.47169400	-0.06940800
С	1.72090800	3.33505400	-0.06867400
С	-1.33475800	-0.53067700	-0.07023900
С	-0.20635100	-1.39802700	-0.07012800
С	1.12446100	-0.89359700	-0.07036700
С	-2.63590400	-1.10496300	-0.07000800
С	-2.82205300	-2.47169400	-0.06940800
С	-1.72090800	-3.33505400	-0.06867400
С	-0.41484800	-2.81043500	-0.06958200
С	0.68361200	-3.69039600	-0.06918200
С	1.98733200	-3.18162200	-0.06988000
С	2.20403400	-1.81942200	-0.07036000
С	1.95424300	4.79608300	-0.06901800
Ν	0.83387900	5.62558700	-0.06516500
С	-0.48571000	5.15578200	-0.06830900
С	-1.95424300	-4.79608300	-0.06901800
N	-0.83387900	-5.62558700	-0.06516500
С	0.48571000	-5.15578200	-0.06830900
0	-1.43353500	5.91629300	-0.06815300
0	3.08216400	5.25110500	-0.07100800
0	-3.08216400	-5.25110500	-0.07100800
0	1.43353500	-5.91629300	-0.06815300
С	1.02725900	7.09744000	-0.05887100
С	-1.02725900	-7.09744000	-0.05887100
С	1.72090800	7.58062100	1.21885800
С	1.68769600	7.57461200	-1.35803800
С	1.59694000	9.08275600	-1.56361600
С	1.03595200	7.12433600	2.50149800

С	-1.72090800	-7.58062100	1.21885800
С	-1.68769600	-7.57461200	-1.35803800
С	-1.03595200	-7.12433600	2.50149800
С	-1.59694000	-9.08275600	-1.56361600
Н	-2.81574100	3.89072900	-0.06975300
Н	-3.22967000	1.45506400	-0.07068600
Н	3.51241200	0.45964100	-0.07033300
Н	3.81980800	2.91178800	-0.06945900
Н	-3.51241200	-0.45964100	-0.07033300
Н	-3.81980800	-2.91178800	-0.06945900
Н	2.81574100	-3.89072900	-0.06975300
Н	3.22967000	-1.45506400	-0.07068600
Н	0.00112100	7.48422100	-0.04815200
Н	-0.00112100	-7.48422100	-0.04815200
Н	2.77251600	7.26185100	1.21087800
Н	1.72204700	8.68090500	1.18472100
Н	2.73680300	7.24854700	-1.37951800
Н	1.18086300	7.06821000	-2.19571300
Н	1.99540000	9.36424300	-2.54938100
Н	0.55423100	9.43493200	-1.51364500
Н	2.17370700	9.63947600	-0.81034300
Н	1.52308100	7.56289800	3.38477300
Н	-0.02480300	7.41934900	2.51981900
Н	1.07646900	6.03043300	2.61816300
Н	-2.77251600	-7.26185100	1.21087800
Н	-1.72204700	-8.68090500	1.18472100
Н	-2.73680300	-7.24854700	-1.37951800
Н	-1.18086300	-7.06821000	-2.19571300
Н	-1.52308100	-7.56289800	3.38477300
Н	0.02480300	-7.41934900	2.51981900
Н	-1.07646900	-6.03043300	2.61816300
Н	-1.99540000	-9.36424300	-2.54938100
Н	-0.55423100	-9.43493200	-1.51364500
Н	-2.17370700	-9.63947600	-0.81034300

PBI Second Triplet Excited State (T₂)

С	2.80349100	2.50394600	-0.06649200
С	1.41976900	2.49150000	-0.06632200
С	0.67906400	1.27465900	-0.06612600
С	1.42214800	0.03524300	-0.06604900
С	2.81914000	0.06960200	-0.06626300

С	3.52056400	1.31217600	-0.06623100
С	0.74077900	-1.23969700	-0.06592400
С	1.54067500	-2.41912700	-0.06611500
С	2.92291900	-2.36357300	-0.06644400
С	3.58044000	-1.13768100	-0.06607600
С	-0.74079900	1.23971500	-0.06621500
С	-1.42218000	-0.03524900	-0.06611300
С	-0.67908700	-1.27467600	-0.06587900
С	-1.54068500	2.41913400	-0.06668700
С	-2.92290600	2.36358300	-0.06707900
С	-3.58045500	1.13768300	-0.06652600
С	-2.81918000	-0.06960800	-0.06649900
С	-3.52058900	-1.31217400	-0.06620600
С	-2.80349500	-2.50395400	-0.06608500
С	-1.41979100	-2.49150700	-0.06577500
С	5.05849800	-1.11106000	-0.06846400
N	5.68549700	0.13637600	-0.06466100
С	4.99745100	1.35898600	-0.06700100
С	-5.05850100	1.11107700	-0.06876700
N	-5.68550400	-0.13636200	-0.06489000
С	-4.99746700	-1.35898000	-0.06711800
0	5.58941700	2.41905500	-0.06785000
0	5.70293500	-2.14135300	-0.07228800
0	-5.70293400	2.14137100	-0.07256800
0	-5.58944500	-2.41904400	-0.06787000
С	7.16796600	0.19610700	-0.06205700
С	-7.16797400	-0.19604200	-0.06216600
С	7.76766700	-0.40644700	1.21283400
С	7.74874400	-0.37053100	-1.36370900
С	9.21780000	-0.01973700	-1.57292900
С	7.20443500	0.18697100	2.49852700
С	-7.76748300	0.40626600	1.21292800
С	-7.74887200	0.37089300	-1.36363600
С	-7.20417500	-0.18763800	2.49837400
С	-9.21794000	0.02013800	-1.57282000
Н	3.36067900	3.44144500	-0.06672100
Н	0.89337400	3.44392500	-0.06644300
Н	1.06142300	-3.39614200	-0.06622300
Н	3.52618200	-3.27215700	-0.06714400
Н	-1.06143900	3.39615400	-0.06692400
Н	-3.52618100	3.27215900	-0.06791800
Н	-3.36070200	-3.44144200	-0.06611600
Н	-0.89340100	-3.44393500	-0.06553100
Н	7.37488700	1.27290400	-0.05022200

Н	-7.37495400	-1.27282900	-0.05049200
Н	7.63557800	-1.49726800	1.20354000
Н	8.85147700	-0.21744800	1.17544900
Н	7.60944500	-1.46020700	-1.38640200
Н	7.15990200	0.04198800	-2.19922600
Н	9.56130800	-0.36209100	-2.56010200
Н	9.38424100	1.06812200	-1.52190700
Н	9.86807900	-0.49238700	-0.82210800
Н	7.72356800	-0.21886000	3.37917900
Н	7.31211700	1.28267300	2.51867400
Н	6.13438600	-0.04189700	2.61858200
Н	-7.63524500	1.49707100	1.20392500
Н	-8.85132500	0.21743500	1.17561400
Н	-7.60959500	1.46057600	-1.38607200
Н	-7.16009000	-0.04140600	-2.19930200
Н	-7.72312000	0.21799200	3.37922800
Н	-7.31203100	-1.28333200	2.51818700
Н	-6.13407200	0.04101200	2.61836200
Н	-9.56154100	0.36277500	-2.55986300
Н	-9.38437100	-1.06773400	-1.52209100
Н	-9.86815300	0.49257300	-0.82180300

References:

- F. Gotardo, L. H. Z. Cocca, T. V. Acunha, A. Longoni, J. Toldo, P. F. B. Gonçalves, B. A. Iglesias and L. De Boni, Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique, *Chem Phys Lett*, 2017, **674**, 48–57.
- 2 M. Deutsch, S. Wirsing, D. Kaiser, R. F. Fink, P. Tegeder and B. Engels, Geometry relaxationmediated localization and delocalization of excitons in organic semiconductors: A quantum chemical study, *J Chem Phys*, 2020, **153**, 224104.
- 3 A. D. Hendsbee, J.-P. Sun, W. K. Law, H. Yan, I. G. Hill, D. M. Spasyuk and G. C. Welch, Synthesis, Self-Assembly, and Solar Cell Performance of N-Annulated Perylene Diimide Non-Fullerene Acceptors, *Chemistry of Materials*, 2016, **28**, 7098–7109.
- 4 E. Sebastian, J. Sunny and M. Hariharan, Excimer evolution hampers symmetry-broken chargeseparated states, *Chem Sci*, 2022, **13**, 10824–10835.
- 5 Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J.

Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 6 C. Adamo and D. Jacquemin, The calculations of excited-state properties with Time-Dependent Density Functional Theory, *Chem. Soc. Rev.*, 2013, **42**, 845–856.
- 7 D. Jacquemin, A. Planchat, C. Adamo and B. Mennucci, TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes, *J Chem Theory Comput*, 2012, **8**, 2359–2372.