Supplementary Materials for

Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe₂ thermoelectric performance by MO-intercalated CuSbSe₂

Lingyun Ye^a, Liuming Wei^{b, *}, Yu Hao^b, Mengyan Ge^c, Xiaobo Shi^d, Hanxing Zhang^{e, *}

^aZhengzhou business University, Gongyi Henan 451200, China

^bDepartment of Network Security, Henan Police College, Zhengzhou 450046, China

^cDepartment of Physics, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China

^dHenan Finance University, Zhengzhou 450046, China

^eDepartment of Electronics and Information Technology, Anhui University of Finance and Economics, Bengbu 233030, China *Corresponding authors

Fig. S1. Calculated temperature dependence of the anisotropic figure of merit ZT of MgOCuSbSe₂ as functions of carrier concentration at 10^{18} , 10^{19} , and 10^{20} cm⁻³ for n-type doping (left panels) or p-type doping (right panels).

Fig. S2. Calculated temperature dependence of the anisotropic figure of merit ZT of CaOCuSbSe₂ as functions of carrier concentration at 10^{18} , 10^{19} , and 10^{20} cm-3 for n-type doping (left panels) or p-type doping (right panels).

Fig. S3. Calculated temperature dependence of the anisotropic figure of merit ZT of SrOCuSbSe₂ as functions of carrier concentration at 10¹⁸, 10¹⁹, and 10²⁰ cm-3 for n-type doping (left panels) or p-type doping (right panels).

Fig. S4. Calculated temperature dependence of the anisotropic figure of merit ZT of BaOCuSbSe₂ as functions of carrier concentration at 10¹⁸, 10¹⁹, and 10²⁰ cm⁻³ for n-type doping (left panels) or p-type doping (right panels).

Fig. S5 The full spectra phonon band structures and vibrational density of states for (a) MgOCuSbSe₂, (b) CaOCuSbSe₂, (c) SrOCuSbSe₂, and (d) BaOCuSbSe₂.

Fig. S6. Calculated frequency-dependent Grüneisen parameters of for (a) MgOCuSbSe₂, (b) CaOCuSbSe₂, (c) SrOCuSbSe₂, and (d) BaOCuSbSe₂.

Fig. S7. Calculated phonon relaxation time for (a) MgOCuSbSe₂, (b) CaOCuSbSe₂, (c) SrOCuSbSe₂, and (d) BaOCuSbSe₂.

Fig. S8. Calculated square group velocity as a function of frequency for (a) MgOCuSbSe₂, (b) CaOCuSbSe₂, (c) SrOCuSbSe₂, and (d) BaOCuSbSe₂.