Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information for

Benchmarking non-adiabatic quantum dynamics using the molecular Tully models

Sandra Gómez,^a Eryn Spinlove,^b and Graham Worth^{a*}

December 14, 2023

^{*a*} Departamento de química Física, Universidad de Salamanca https://ror.org/02f40zc51, 37008, Spain

^b Faculty of Science and Engineering, Theoretical Chemistry — Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

^a Dept. of Chemistry, University College London, 20, Gordon St., London, WC1H 0AJ, g.a.worth@ucl.ac.uk.

Contents

S1	Quantum Chemistry Data Defining Ibele-Curchod Model 1	S2
S2	Quantum Chemistry Data Defining Ibele-Curchod Model 2	S 3
S 3	Quantum Chemistry Data Defining Ibele-Curchod Model 3	S 5
S4	ML-MCTDH trees for LVC calculations on the IC Models	S7
S5	Geometries of the Molecules at the Conical Intersections	S10
S6	Convergence of vMCG and partitioned vMCG (G-MCTDH).	S16
S7	The validity of the adiabatic populations from vMCG	S17
S8	Loss of Wavepacket Symmetry in DD-vMCG Simulation of IC1	S19
S9	Datasets of Calculations Available	S20

S1 Quantum Chemistry Data Defining Ibele-Curchod Model 1

•

Mode	Symmetry	ω (cm ⁻¹)	ω (eV)	Description
<i>v</i> ₁	1b _{2u}	887.01	0.1100	CH rock (anti)
v_2	1b _{2g}	1053.72	0.1306	pyramidalisation (anti)
v_3	$1b_{3u}$	1142.38	0.1416	pyramidalisation (sym)
v_4	1b _{3g}	1342.93	0.1665	CH rock (sym)
v_5	1a _g	1446.52	0.1793	CC stretch
v_6	$1b_{1u}$	1604.80	0.1990	CH ₂ bend (anti)
v_7	2ag	1782.92	0.2211	CH ₂ bend (sym)
v_8	1a _u	2104.59	0.2609	torsion
v_9	1b _{1u}	3323.42	0.4121	CH ₂ stretch (anti)
v_{10}	3ag	3343.61	0.4146	CH ₂ stretch (sym)
v_{11}	$2b_{3g}$	3400.79	0.4216	CH stretch (anti-anti)
v_{12}	$2b_{2u}$	3426.53	0.4248	CH stretch (sym-anti)

Table S1 Vibrational modes and frequencies of ethene calculated at the D_{2h} minimum energy geometry

Table S2 Optimized Cartesian coordinates (in Å) of ethene with D_{2h} symmetry calculated using SA(3)-CASSCF(2/2)/6-31G*.

С	-0.000000011	-0.6704906441	0.0000000000
С	0.000000011	0.6704906441	0.0000000000
Н	0.9156718485	-1.2339527181	0.0000000000
Н	-0.9156718493	-1.2339527198	0.0000000000
Н	0.9156718493	1.2339527198	0.0000000000
Н	-0.9156718485	1.2339527181	0.000000000

Table S3 Energies of the three lowest states of ethene calculated at the D_{2h} optimised structure with SA(3)-CASSCF(2/2)/6-31G*.

	Symmetry	E (Hartree)	$\Delta E (eV)$
S ₀ (N)	A _{1g}	-78.04883756	0.0
S ₁ (V)	B _{1u}	-77.67351801	10.213
S ₂ (Z)	A _{1g}	-77.48851606	15.247

S2 Quantum Chemistry Data Defining Ibele-Curchod Model 2

Table S4 Vibrational modes and frequencies of DMABN calculated at the ωB97X-D3/cc-pVDZ minimum energy geometry.	ip
/ oop: in-plnae / out-of-plane. IPh/ OOPh: in-phase / out-of-phase. r/m/am/nit: ring / methyl / amino / nitrile	

			•	1			
Mode	ω (cm ⁻¹)	ω (eV)	Description	Mode	ω (cm ⁻¹)	ω (eV)	Description
v_1	50.17	0.00622	N pyramidalisation (sym)	v_{30}	192.57	0.14786	NCH ip OOPh wag
v_2	73.31	0.00909	N pyramidalisation (anti)	<i>v</i> ₃₁	1204.61	0.14935	CH(r) ip OOPh bend
<i>V</i> ₃	83.28	0.01033	N oop IPh wag	V ₃₂	1252.97	0.15535	CC(nit) stretch
v_4	134.95	0.01673	CN ip wag	<i>v</i> ₃₃	1296.15	0.16070	ip ring distortion
v_5	176.51	0.02188	CH ₃ IPh rotation	v ₃₄	1333.18	0.16529	ip ring distortion
v_6	186.87	0.02317	CH ₃ OOPh rotation	<i>v</i> ₃₅	1391.91	0.17258	CN(am) ip wag
v_7	257.00	0.03186	ip rock (CN OOPh)	<i>v</i> ₃₆	1416.98	0.17568	CN(am) stretch
v_8	288.35	0.03575	oop rock (CN OOPh)	V 37	1434.17	0.17782	CH ₃ OOPh umbrella
v_9	339.78	0.04213	quinoid	v_{38}	1460.61	0.18109	CH(m) oop OOPh wag
v_{10}	429.37	0.05324	ring puckering	V 39	1469.44	0.18219	CH(m) oop IPh wag
v_{11}	477.36	0.05919	ip rock (CN OOPh)	v_{40}	1477.95	0.18324	CH ₂ OOPh scissor
v_{12}	492.69	0.06109	CH(r) CH(m) wag IPh	v_{41}	1480.33	0.18354	CH ₂ IPh scissor
<i>v</i> ₁₃	502.80	0.06234	CC(N) oop rock	<i>v</i> ₄₂	1505.07	0.18661	CH ₃ IPh wag
v_{14}	571.15	0.07081	CH(r) oop IPh wag	v ₄₃	1512.19	0.18749	CH ₃ OOPh wag
v_{15}	572.87	0.07103	ip ring distortion	v_{44}	1589.53	0.19708	CN(am) CC(nit) assym
v_{16}	664.39	0.08237	ip ring distortion				stretch
v_{17}	676.38	0.08386	CN(CH ₃)+CC(N) OOPh	v_{45}	1641.33	0.20350	ring distortion
			stretch	v_{46}	1709.11	0.21190	ring distortion
v_{18}	751.21	0.09314	CH oop OOPh	v_{47}	2389.09	0.29621	CN(nit) stretch
v_{19}	819.72	0.10163	ring breathing	v_{48}	3017.45	0.37412	CH ₃ sym OOPh stretch
v_{20}	836.95	0.10377	CH oop OOPh	v_{49}	3025.27	0.37509	CH ₃ sym IPh stretch
v_{21}	852.95	0.10575	CH oop IPh	v_{50}	3093.87	0.38359	CH ₃ assym OOPh stretch
v_{22}	989.78	0.12272	CH oop OOPh	v_{51}	3094.99	0.38373	CH ₃ assym IPh stretch
<i>v</i> ₂₃	991.60	0.12294	CH oop OOPh	<i>v</i> ₅₂	3169.04	0.39291	CH(m) OOPh stretch
v_{24}	000.75	0.12408	NCH ₂ sym stretch	V 53	3178.38	0.39407	CH(m) IPh stretch
v_{25}	024.85	0.12707	ip ring distortion	v_{54}	3220.64	0.39931	CH(r) ip OOPh stretch
v_{26}	087.14	0.13479	NCH ip IPh wag	V55	3221.56	0.39943	CH(r) ip OOPh stretch
<i>v</i> ₂₇	137.37	0.14102	NCH ₂ OOPh rock	<i>v</i> ₅₆	3250.34	0.40299	CH(r) ip OOPh stretch
<i>v</i> ₂₈	138.07	0.14110	NCH ₂ IPh rock	<i>v</i> ₅₇	3251.10	0.40309	CH(r) ip IPh stretch
<i>V</i> ₂₉	153.21	0.14298	CH(r) ip OOPh bend				

С	3.0172032156	-1.2495342820	-0.0407263572
Ν	2.2965346317	-0.0007382064	0.0765362179
С	0.9227684515	0.0011669690	0.0406136174
С	0.1894664254	-1.2080894970	0.0226004573
С	-1.1951519719	-1.2024086782	0.0071562861
С	-1.9092694984	0.0019924784	0.0014527143
С	-1.1945366746	1.2061423453	0.0075358752
С	0.1903606382	1.2111666789	0.0229409050
Н	0.7068836956	2.1695413596	0.0222661446
Н	-1.7369287128	2.1529942369	-0.0027881064
С	-3.3461238316	0.0002457163	-0.0155114324
Ν	-4.5069517191	-0.0036082781	-0.0289051756
Н	-1.7378729649	-2.1491549771	-0.0035165236
Н	0.7051821594	-2.1669359267	0.0216071329
С	3.0207837331	1.2456860006	-0.0416260401
Н	2.7557928691	1.9437474024	0.7689936831
Н	4.0954954704	1.0436507981	0.0366899803
Н	2.8368107703	1.7537485375	-1.0061833358
Н	2.7503589489	-1.9464189769	0.7703690787
Н	2.8316611564	-1.7582031336	-1.0047208524
Н	4.0925332948	-1.0507503157	0.0372493490

Table S5 Optimized Cartesian coordinates (in Å) of DMABN calculated using ωB97X-D3/cc-pVDZ.

Table S6 Energies of the three lowest states of DMABN calculated at the optimised structure with TDA-ωB97X-D3/cc-pVDZ.

	E (Hartree)	$\Delta E (eV)$
S ₀	-458.22546	0.0
S_1	-458.04415	4.933
S_2	-458.03028	5.311

S3 Quantum Chemistry Data Defining Ibele-Curchod Model 3

	Mode	Symmetry	ω (cm ⁻¹)	ω (eV)	Description
	v_1	1b ₁	210.54	0.0261	oop CH ₂ wag
	v_2	1b ₂	365.40	0.0453	ip CH ₂ rock
	<i>v</i> ₃	1a ₂	497.97	0.0617	ring pucker
	v_4	$2b_1$	625.91	0.0776	oop ring C–H
	v_5	2a ₂	690.41	0.0856	oop ring C–H
	v_6	1a ₁	705.73	0.0875	ring elongation
	v_7	3b ₁	765.34	0.0949	ring oop distortion
	v_8	3a ₂	787.69	0.0977	CH ₂ torsion
	v_9	$2b_2$	855.18	0.1060	ip ring distortion
	v_{10}	4a ₂	893.17	0.1107	oop ring C–H
	v_{11}	$4b_1$	899.61	0.1115	oop ring C–H
	v_{12}	2a ₁	906.76	0.1124	ring stretch
	<i>v</i> ₁₃	3b ₂	946.81	0.1174	CH ₂ ip H-rock
	v_{14}	3a ₁	1033.30	0.1281	ring stretch
•	v_{15}	5b ₁	1041.20	0.1291	CH ₂ oop H-wag
	v_{16}	4b ₂	1175.76	0.1458	ip ring H-bend
	v_{17}	4a ₁	1179.94	0.1463	ip ring H-bend
	v_{18}	5b ₂	1359.11	0.1685	ip H-rock
	v_{19}	6b ₂	1452.69	0.1801	ip ring distortion
	v_{20}	5a ₁	1474.77	0.1828	ip ring H-bend
	v_{21}	6a ₁	1561.53	0.1936	ip CH ₂ bend
	V ₂₂	7a ₁	1638.14	0.2031	ip ring distortion + CH ₂ bend
	<i>v</i> ₂₃	7b ₂	1690.84	0.2096	ip ring distortion
	<i>v</i> ₂₄	8a ₁	1778.19	0.2205	ring=CH ₂ stretch
	<i>v</i> ₂₅	9a ₁	3339.85	0.4141	CH ₂ symm stretch
	v_{26}	8b ₂	3422.76	0.4244	CH ₂ anti-symm stretch
	v_{27}	9b ₂	3448.75	0.4276	ring-H anti-symm stretch
	v_{28}	10a ₁	3451.28	0.4279	ring-H symm stretch
	<i>v</i> ₂₉	10b ₂	3474.72	0.4308	ring-H anti-symm stretch
	<i>v</i> ₃₀	11a ₁	3488.21	0.4325	ring-H symm stretch

Table S7 Vibrational modes and frequencies of fulvene calculated at the C_{2v} minimum energy geometry with the molecule in the yz-plane. ip / oop: in-plane / out-of-plane.

С	0.0000000000	1.1795473000	-0.1211794000
С	0.0000000000	0.7405988000	-1.4006101000
С	0.0000000000	-0.7405989000	-1.4006101000
С	0.0000000000	-1.1795473000	-0.1211794000
С	0.0000000000	0.0000000000	0.7666464000
С	0.0000000000	0.0000000000	2.1154199000
Н	0.0000000000	-0.9153375000	2.6777939000
Н	0.0000000000	0.9153375000	2.6777939000
Н	0.0000000000	-2.1928593000	0.2152754000
Н	0.0000000000	-1.3524621000	-2.2726760000
Н	0.0000000000	1.3524621000	-2.2726760000
Н	0.0000000000	2.1928593000	0.2152754000

Table S8 Optimized Cartesian coordinates (in Å) of fulvene calculated using SA(2)-CASSCF(6,6)/6-31G*.

Table S9 Energies of the two lowest states of fulvene calculated at the C_{2v} optimised structure with SA(2)-CASSCF(6,6)/6-31G*.

	Symmetry	E (Hartree)	ΔE (eV)
S ₀	A_1	-230.72231135	0.0
\mathbf{S}_1	B_2	-230.56998243	4.161

S4 ML-MCTDH trees for LVC calculations on the IC Models

Figure S1 Largest SPF basis used for the ML-MCTDH dynamics of IC1 ethylene on the LVC potentials. The numbers on the last layer correspond to the number of primitive harmonic oscillator DVR functions used.

Figure S2 Largest SPF basis used for the ML-MCTDH dynamics of IC2 DMABN on the LVC potentials. The numbers on the last layer correspond to the number of primitive harmonic oscillator DVR functions used.

Figure S3 Largest SPF basis used for the ML-MCTDH dynamics of IC3 fulvene on the LVC potentials. The numbers on the last layer correspond to the number of primitive harmonic oscillator DVR functions used.

S5 Geometries of the Molecules at the Conical Intersections

С	-0.008033	-0.680656	0.003929
С	0.002923	0.674370	0.013231
Н	0.709421	-1.112851	-0.730160
Н	-0.694334	-1.236853	0.658034
Н	0.692786	1.218795	0.627922
Н	-0.646988	1.205814	-0.760273

Table S10 Minimum energy conical intersection between states S_1 and S_2 , in Cartesian coordinates (in Å), of ethene taken from the dynamics database potentials.

Figure S4 Minimum energy conical intersection between states S1 and S2, of ethene from the dynamics database potentials

Table S11 Minimum energy conical intersection between states S_0 and S_1 , in Cartesian coordinates (in Å), of ethene taken from the dynamics database potentials.

С	0.100643	-1.375462	-0.233367
С	-0.063276	1.452296	0.174959
Н	0.646177	-2.425109	1.050178
Н	-1.018896	-1.346184	0.619764
Н	1.030552	1.454470	-0.702185
Н	-1.103063	1.401279	-0.271771

Figure S5 Minimum energy conical intersection between states S_0 and S_1 , of ethene from the dynamics database potentials.

Table S12 Comparison of the normal mode coordinates of the minimum energy conical intersection between states S_1 and S_2 for ethene from the LVC model and the DD-vMCG potentials.

	Normal Mode Coordinate		
Mode	LVC	DD-vMCG	
v ₁	0.00000	0.33226	
v ₂	0.00000	-0.21166	
v ₃	0.00000	-0.64567	
V 4	0.00004	-0.41130	
V5	-3.54784	-0.55934	
v ₆	-0.00000	0.35548	
V 7	-3.06464	1.19622	
v ₈	0.00000	-11.01107	
V9	-0.00000	0.05233	
v ₁₀	-0.55158	-4.29818	
v_{11}	-0.00002	-0.38107	
v ₁₂	-0.00000	0.00703	

С	3.024509	-1.240828	-0.053202
Ν	2.311406	-0.001309	0.109433
С	0.924761	0.001395	0.050468
С	0.167591	-1.213849	0.024264
С	-1.178039	-1.214803	0.003590
С	-1.936117	0.002263	-0.000258
С	-1.176807	1.218886	0.006504
С	0.169123	1.218514	0.029222
Н	0.685117	2.175891	0.031455
Н	-1.711497	2.166576	-0.015362
С	-3.336139	0.000554	-0.017013
Ν	-4.516214	-0.004586	-0.029601
Н	-1.712016	-2.163056	-0.010281
Н	0.683575	-2.169372	0.016825
С	3.026846	1.236121	-0.059797
Н	2.731126	1.992572	0.692231
Н	4.099093	1.041142	0.061865
Н	2.868018	1.692105	-1.063399
Н	2.716856	-1.995810	0.697967
Н	2.881685	-1.699717	-1.060008
Н	4.098102	-1.051986	0.082546

Table S13 Minimum energy conical intersection, in Cartesian coordinates (in Å), between states S_1 and S_2 of DMABN, taken from the dynamics database potentials.

Figure S6 Mimimum energy conical intersection between states S2 and S3 of DMABN, from the dynamics database potentials

	Normal Mo	de Coordinate		Normal Mo	de Coordinate
Mode	LVC	DD-vMCG	Mode	LVC	DD-vMCG
q ₁	0.05343	0.25551	q ₃₀	0.14690	0.13330
q_2	0.19418	0.06143	q ₃₁	0.70029	0.57175
\mathbf{q}_3	0.42462	0.19868	q ₃₂	-0.21560	-0.00944
q_4	0.04447	-0.00580	q ₃₃	0.00071	0.00014
q_5	0.15069	0.04466	q ₃₄	-0.00261	0.00151
q_6	0.02069	-0.00691	q ₃₅	-0.00132	0.00880
\mathbf{q}_7	-0.03828	-0.00537	q ₃₆	0.20816	0.24245
\mathbf{q}_{8}	-0.16589	-0.03621	q ₃₇	0.00310	-0.01522
q 9	0.38585	0.15609	q ₃₈	0.00120	-0.01328
q_{10}	0.00718	-0.02757	q ₃₉	-0.01796	-0.02500
q_{11}	-0.00414	-0.02002	q ₄₀	0.05473	0.04427
q ₁₂	0.28074	0.04826	q_{41}	-0.00553	-0.00688
q ₁₃	0.13323	0.02080	q ₄₂	-0.00181	0.00763
q_{14}	0.00097	0.01345	q ₄₃	0.14007	0.14505
q ₁₅	0.04425	0.01512	q_{44}	-0.49346	-0.37440
q ₁₆	-0.00265	0.00679	q ₄₅	-0.00079	-0.00385
q_{17}	0.14531	0.06100	q ₄₆	0.98669	0.99337
q_{18}	0.08844	0.05069	q ₄₇	0.47848	0.47945
q ₁₉	0.61324	0.09655	q_{48}	-0.00317	-0.01493
q ₂₀	-0.00294	-0.00419	q49	-0.10873	-0.08274
q ₂₁	-0.03711	-0.03920	q ₅₀	-0.00246	0.00093
q ₂₂	0.29439	0.08675	q ₅₁	-0.00561	-0.00882
q ₂₃	-0.40303	-0.12405	q ₅₂	0.00093	0.00165
q ₂₄	0.00020	0.03656	q ₅₃	-0.03516	-0.02270
q ₂₅	0.12662	0.03467	q ₅₄	0.03130	0.03041
q ₂₆	0.00123	-0.00226	q 55	-0.01166	-0.01378
q ₂₇	0.10862	0.11113	q ₅₆	-0.00010	0.01099
q ₂₈	-0.02740	-0.04254	q ₅₇	0.02153	-0.02703
q ₂₉	-0.01307	-0.01122			

Table S14 Comparison of the normal mode coordinates of the minimum energy conical intersection of the S_2 and S_3 states of DMABN taken from the LVC model and DD-vMCG dynamics data

С	-0.000053	1.102171	-0.065221
С	0.000078	0.646263	-1.522348
С	0.000368	-0.645872	-1.522935
С	0.001107	-1.103406	-0.066112
С	-0.000437	-0.000737	0.729923
С	-0.001055	0.001148	2.267389
Н	0.001306	-0.917628	2.810638
Н	0.001240	0.923555	2.803640
Н	0.001466	-2.113285	0.288844
Н	-0.007532	-1.297010	-2.373363
Н	-0.003840	1.299140	-2.371137
Н	0.007253	2.110393	0.294352

Table S15 Minimum energy conical intersection in Cartesian coordinates (in Å) of the S_0 and S_1 states of fulvene taken from the dynamics database potentials

Figure S7 Minimum energy conical intersection of fulvene, taken from the dynamics database

	Normal Mode Coordinate	
Mode	LVC	DD-vMCG
q ₁	0.00000	-0.01210
q_2	0.00000	0.03246
q ₃	0.00000	-0.01107
q_4	0.00000	-0.00913
q_5	0.00000	-0.01936
q_6	2.55690	2.76994
\mathbf{q}_7	0.00000	-0.01989
\mathbf{q}_{8}	0.00000	-0.01112
q 9	0.00000	-0.00259
q ₁₀	0.00000	0.03444
q_{11}	0.00000	0.00343
q ₁₂	0.00000	0.03285
q ₁₃	-1.96350	-1.59851
q_{14}	0.00000	0.00435
q ₁₅	-2.21243	-1.61462
q ₁₆	0.00000	-0.00414
q_{17}	1.76322	2.56636
q_{18}	0.00000	0.01640
q ₁₉	0.00000	-0.00372
q ₂₀	-0.95906	-1.02351
q ₂₁	0.49381	0.88174
q ₂₂	2.58957	3.03345
q ₂₃	0.00000	0.00279
q ₂₄	-3.08090	-3.29134
q ₂₅	0.19601	0.23302
q ₂₆	0.00000	-0.00414
q ₂₇	0.00000	0.00017
q ₂₈	-0.04144	0.02233
q ₂₉	0.00000	-0.00239
q ₃₀	-0.05960	0.00731

Table S16 Comparison of the normal mode coordinates of the minimum energy conical intersection of the S_0 and S_1 states of fulvene, taken from the LVC and DD-vMCG dynamics data

S6 Convergence of vMCG and partitioned vMCG (G-MCTDH).

Figure S8 Convergence of vMCG and partitioned vMCG for the diabatic state populations of the fulvene LVC Hamiltonian. (a) vMCG calculations with different numbers of full dimensional basis functions for a 6D model. Approaching convergence on the exact MCTDH result (ML-full) with 40 GWPs. (b) Partitioned vMCG (G-MCTDH) calculations with different numbers of basis functions. The modes are partitioned as in Table 1 of the paper and the number of GWPs changed for the first partition, keeping 40 GWPs for the second partition in all calcualtions. Convergence against the full ML-MCTDH result (ML-full) is seen for a basis of (100,40), i.e. 4000 configurations.

S7 The validity of the adiabatic populations from vMCG

Figure S9 The (a) diabatic and (b) adiabatic populations for reduced dimensionality models of IC2 (DMABN) using the LVC Hamiltonian. In (a), the difference in diabatic populations for 6D and 12D models are compared to the full dimensional calculation. In (b), the exact adiabatic populations for the 6D model from an MCTDH calculation are shown (exact-adp), along with a correlation DVR approximation used on the same simulation (cDVR) which is seen to perform well. The adiabatic populations from a 6D vMCG calculation using the saddle-point approximation (sad0) are seen to deviate when passing through the intersection, but to otherwise provide a good approximation for the populations.

Figure S10 Heatmap corresponding to the hopping geometries extracted from the Tully surface hopping trajectories in the IC1 model (ethene) and projected onto the q_2 pyramidalisation and q_8 torsional modes. The values have been binned (n=20) and the z axis corresponds to the number of values in the interval. The most visited geometries correspond to values around q_8 =9-12 and q_2 =0-3.

С	-0.002719	-0.826984	0.017367
С	-0.054046	0.805890	-0.070521
Н	1.111156	-1.298427	0.646442
Н	-0.686581	-1.195414	-0.614285
Н	0.700451	1.083783	-0.329751
Н	-0.448625	1.661427	0.930976

Table S17 Representative (average) "hopping" geometry, in Cartesian coordinates (in Å), of ethene taken from the geometries where hops take place in the DD-TSH calculations. Used to define the cut through the potentials in Fig. 8.

Figure S11 Representative (average) "hopping" geometry of ethene taken from the geometries where hops take place in the DD-TSH calculations.

Figure S12 The values of the pyramidalisation (q_2) coordinate taken from simulations of the IC1 model. (a) The centre of the GWP basis functions from DD-vMCG and (b) Trajectories from DD-TSH. The symmetry is lost in DD-vMCG after an oscillation but the wavefunction remains compact (see Fig. 7 for the full density of the wavepacket on top of the trajectories).

S9 Datasets of Calculations Available

The data from the calculations are available at DOI: 10.5522/04/23807676. They are in the form of zipped tar files containing all the input and output files for the calculations described in the paper.

ethene_lvc.tar.gz	LVC model of IC1 (ethene). MCTDH, vMCG and TSH calculations.
dmabn_lvc.tar.gz	LVC model of IC2 (DMABN). MCTDH, vMCG and TSH calculations.
fulvene_lvc.tar.gz	LVC model of IC3 (fulvene). MCTDH, vMCG and TSH calculations.
ethene_direct.tar.gz	Direct dynamics of IC1 (ethene). DD-vMCG and DD-TSH calculations.
	Includes the potential energy database (ethene_DB)
dmabn_direct.tar.gz	Direct dynamics of IC2 (DMABN). DD-vMCG and DD-TSH calculations.
	Includes the potential energy database (dmabn_DB)
fulvene_direct.tar.gz	Direct dynamics of IC3 (fulvene). DD-vMCG and DD-TSH calculations.
	Includes the potential energy database (fulvene_db)