Electronic Supplementary Information to

Threshold Photoelectron Spectrum and Dissociative Photoionization of Benzonitrile

Jerry Kamer，${ }^{\dagger}$ Domenik Schleier，${ }^{\dagger, \ddagger}$ Merel Donker，${ }^{\dagger}$ Patrick Hemberger，${ }^{〔}$ Andras Bodi，${ }^{〔}$ and Jordy Bouwman ${ }^{*} \S, \|, \perp$
\dagger Laboratory for Astrophysics，Leiden Observatory，Leiden University，NL 2300 RA Leiden，The Netherlands
\ddagger Lehrstuhl Technische Thermodynamik，Fakultät für Maschinenbau，Universität Paderborn， Warburger Str．100， 33098 Paderborn，Germany
【Laboratory for Synchrotron Radiation and Femtochemistry，Paul Scherrer Institut， 5232
Villigen，Switzerland
§Laboratory for Atmospheric and Space Physics，University of Colorado，Boulder，CO 80303，USA
｜｜Department of Chemistry，University of Colorado，Boulder，CO 80309，USA
\perp Institute for Modeling Plasma，Atmospheres and Cosmic Dust（IMPACT），NASA／SSERVI， Boulder，CO 80309，USA
E－mail：Jordy．Bouwman＠colorado．edu
Phone：＋31715278432

This Electronic Supplementary Information contains further information to the main manuscript. First, an overview TPES of benzonitrile is presented. Next, the geometries of the $\widetilde{X}^{+}, \widetilde{B}^{+}$and \widetilde{C}^{+}excited states are shown with the bond lengths and angles, together with their Cartesian coordinates. Finally, a detailed description of the potential energy surface (PES) is provided.

TPES overview

The full threshold photoelectron spectrum of benzonitrile spanning the energy range from 9.5 to 14.0 eV is shown in Fig. S1.

Figure S1: Threshold photoelectron spectrum of benzonitrile for the energy range of 9.5 to 14.0 eV .

Benzonitrile excited state structures and their Cartesian coordinates

In this section the Cartesian coordinates of the $\widetilde{X}^{+}, \widetilde{B}^{+}$and \widetilde{C}^{+}excited states that are used to simulate the TPES data are provided together with the bond lengths and angles. The structures were optimized using the $\omega \mathrm{B} 97 \mathrm{XD} / 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ method.

Fig. S2 shows the geometry of the neutral ground state of benzonitrile. The structure is

Figure S2: Molecular structure of the neutral ground state of benzonitrile accompanied with the bond lengths in \AA and bond angles in degrees.
of $\mathrm{C}_{2 \mathrm{v}}$ symmetry. The Cartesian coordinates of this state are presented in Table 1.
Table S1: Cartesian coordinates of the molecular structure of the neutral ground state of benzonitrile.

Atom	Coordinates		
	x	y	Z
C	0.000000	1.205814	-1.477156
C	0.000000	1.211771	-0.090012
C	0.000000	0.000000	-2.170236
H	0.000000	2.145173	0.459703
C	0.000000	0.000000	0.604488
C	0.000000	-1.205830	-1.477156
H	0.000000	-2.144650	-2.018109
C	0.000000	-1.211750	-0.090024
H	0.000000	-2.145189	0.459703
C	0.000000	0.000000	2.039246
N	0.000000	0.000000	3.190878
H	0.000000	0.000000	-3.254222
H	0.000000	2.144634	-2.018109

Fig. S3 shows the geometry of the \widetilde{X}^{+}ground state of benzonitrile cation. The structure

Figure S3: Molecular structure of the \widetilde{X}^{+}excited state of benzonitrile accompanied with the bond lengths in \AA and bond angles in degrees.
is of $\mathrm{C}_{2 \mathrm{v}}$ symmetry, similar to neutral benzonitrile. The Cartesian coordinates of this state are presented in Table 2.

The geometry of the second excited state of the benzonitrile cation, the \widetilde{B}^{+}state, is shown in Fig. S4. Most notably, compared to the \widetilde{X}^{+}state, the phenyl ring is compressed perpendicular to the principal axis, thereby elongating the ring along this axis. Nevertheless, the structure remains in $\mathrm{C}_{2 \mathrm{v}}$ symmetry. Cartesian coordinates of the \widetilde{B}^{+}state are presented in Table 3.

Lastly, Fig. S5 shows the geometry of the \widetilde{C}^{+}state of benzonitrile. A significant structural change compared to the ground state ion is visible. The most apparent change is that the CN group now has a 179.66° angle. This, along with other structural changes, gives the geometry a C_{s} symmetry. The Cartesian coordinates of the \widetilde{C}^{+}state are presented in Table 4.

Table S2: Cartesian coordinates of the molecular structure of the cationic ground state of benzonitrile.

Atom	Coordinates		
	x	y	Z
C	0.000000	1.240442	-1.458870
C	0.000000	1.250888	-0.095564
C	0.000000	0.000000	-2.148443
H	0.000000	2.174662	0.470353
C	0.000000	0.000000	0.605973
C	0.000000	-1.240442	-1.458870
H	0.000000	-2.166581	-2.019942
C	0.000000	-1.250888	-0.095564
H	0.000000	-2.174662	0.470353
C	0.000000	0.000000	2.009291
N	0.000000	0.000000	3.169308
H	0.000000	0.000000	-3.233685
H	0.000000	2.166581	-2.019942

Figure S4: Molecular structure of the \widetilde{B}^{+}state of benzonitrile accompanied with the bond lengths in \AA and bond angles in degrees.

Table S3: Cartesian coordinates of the molecular structure of the \widetilde{B}^{+}state of benzonitrile.

Atom	Coordinates		
	x	y	Z
C	0.000000	1.207494	-1.467357
C	0.000000	1.237862	-0.090594
C	0.000000	0.000000	-2.156744
H	0.000000	2.170779	0.457956
C	0.000000	0.000000	0.608925
C	0.000000	-1.207490	-1.467357
H	0.000000	-2.146713	-2.010169
C	0.000000	-1.237872	-0.090570
H	0.000000	-2.170775	0.457956
C	0.000000	0.000000	1.989875
N	0.000000	0.000000	3.198174
H	0.000000	0.000000	-3.239851
H	0.000000	2.146717	-2.010169

Figure S5: Molecular structure of the \widetilde{C}^{+}state of benzonitrile accompanied with the bond lengths in \AA and bond angles in degrees.

Table S4: Cartesian coordinates of the molecular structure of the \widetilde{C}^{+}state of benzonitrile.

Atom	Coordinates		
	x	y	z
C	0.000000	1.271570	-1.441290
C	0.000000	1.228442	-0.028106
C	0.000000	0.050584	-2.204940
H	0.000000	2.150541	0.539895
C	0.000000	0.000000	0.606781
C	0.000000	-1.179716	-1.532533
H	0.000000	-2.108556	-2.089848
C	0.000000	-1.210675	-0.117513
H	0.000000	-2.160762	0.403006
C	0.000000	-0.059134	2.035740
N	0.000000	-0.114823	3.211320
H	0.000000	0.090139	-3.287217
H	0.000000	2.225972	-1.953906

Detailed description of the PES

This section gives an in-depth description of the PES presented in the main manuscript. To facilitate the description of the isomerization pathways, the carbon atoms are numbered as shown in Fig. S6. The pathways will be described in descending order of m / z of the cationic

Figure S6: The molecular structure of benzonitrile $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\right)$. The carbon atoms in the phenyl ring are numbered
fragments. The colors of the pathways match with the fragments in the breakdown diagram presented in the main manuscript. The pathways depicted in black are not considered in the breakdown diagram simulations.

CN loss comprises a benzonitrile dissociation channel in which the CN is removed without a reverse barrier (Fig. S7), resulting in the closed-shell phenylium ${ }^{+}$and CN^{\cdot} at an energy of 4.34 eV , with respect to the benzonitrile cation ground state. This channel accounts for about 22% at an energy of 17.0 eV .

HCN loss is the dominant dissociation channel from the onset of dissociation up to about 18.1 eV . At a maximum it accounts for about 98% of the fractional abundance at around 15 eV . This channel leads to the formation of bicyclic meta-benzyne ${ }^{++}\left(\mathrm{BMB}^{++}\right)$and HCN. The pathway leading to HCN loss is displayed in Fig. S7. The lowest energy path to HCN loss is found to start via TS1, which is direct H atom migration from C 2 (or by symmetry C6) to the N atom by the at 3.42 eV . This also happens to be the rate-limiting step of the HCN loss channel. Optimizations were also done on the H atom migration to the C atom

Figure S7: The benzonitrile ${ }^{++}$potential energy surface resulting in $m / z 76$ and 77 (blue). Both BMB ${ }^{++}$(green) and meta-benzyne ${ }^{++}$(black) are presented.
of the nitrile group, however the resulting structure does not converge and the H atom ends up on the N atom instead. The intermediate state $\mathbf{I N} 1$, formed over TS1, lies at an energy of 0.54 eV . From IN1, the H atom bound to C 3 migrates to the vacancy on C 2 via TS2 at 3.17 eV , resulting in the intermediate state $\mathbf{I N} 2$ at 0.53 eV . Subsequently, the H atom moves from the nitrogen to the carbon in the nitrile group, creating the HCN moiety. This transition state TS3 sits at 3.37 eV and gives rise to the intermediate state $\mathbf{I N} 3$ at 2.72 eV . Next, TS4 located at 2.93 eV is crossed, resulting in IN4 at 1.05 eV which has an HCN moiety perpendicular to the plane of the phenyl ring. From this intermediate state, the HCN moiety can connected with the nitrogen to C 1 via TS5 at 2.73 eV , resulting in IN5 which sits at 1.05 eV . This structure exhibits the HCN moiety in-plane with the phenyl ring and the nitrogen atom bound to C1. Finally, bringing C3 and C6 together results in the energetically favorable $\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$structure: $\mathrm{BMB}^{++}+\mathrm{HCN}$ at 3.29 eV . Alternatively, by elongating the $\mathrm{N}-\mathrm{C}$ bond without bringing C3 and C6 closer the fragments meta-benzyne ${ }^{\cdot+}$ and HCN are formed at 3.41 eV . Since both energies of the final products are below the energy of rate-limiting transition state TS1 at 3.42 eV , both cationic fragments are potentially formed.

Ortho-benzyne is energetically unfavourable to be formed at the onset of HCN loss. At higher photon energies, however, ortho-benzyne could possibly be formed. The pathway is displayed in Fig. S8 and initially follows the same route as BMB^{++}(or meta-benzyne ${ }^{++}$)

Figure S8: The benzonitrile ${ }^{\cdot+}$ potential energy surface resulting in $m / z 76$ by forming orthobenzyne ${ }^{\cdot+}$. Two possible pathways are presented.
formation till IN1. Since, ortho-benzyne is being formed, no H atom migration in the phenyl ring is necessary. The H atom in the nitrile group moves from the nitrogen to the carbon, creating the HCN moiety. This can proceed in two fashions, namely by the H atom pointing away from the vacancy (TS33) or pointing towards it (TS36). Following TS33 at 3.62 eV , we end up at IN31 with an energy of 2.83 eV . The N atom moves towards the vacancy on the phenyl ring via TS34 at 3.01 eV and binds to C 2 , resulting in the bicyclic molecule of IN32 at 1.18 eV . Subsequently, the bond between C1 and the nitrile group opens which results in IN35, where the linear HCN group is bound to C 2 with the nitrogen, at 1.08 eV . Separating HCN from the phenyl ring results in out-of-plane ortho-benzyne ${ }^{+1}$ and HCN at 3.71 eV . Following TS36 at 3.57 eV , we end up at IN33 with an energy of 2.84 eV . Elongating the bond between C1 and the nitrile group, rotates the nitrile group via TS37 at 2.97 eV , until it sits in the configuration of $\mathbf{I N} 34$ at 2.48 eV . When the N atom moves towards C1 via TS38 at 2.80 eV , it binds to C 1 causing the $\mathrm{C}-\mathrm{C}$ bond between C 1 and the nitrile group to break, results in IN35. Now out-of-plane ortho-benzyne ${ }^{++}$and HCN can be formed by separating HCN from the phenyl ring. The formation of ortho-benzyne ${ }^{+}$from benzonitrile ${ }^{++}$proceeds without a reverse barrier.

HNC loss, depicted in Fig. 9, follows a similar trend as HCN loss for the first few transition and intermediate states. Contrary to HCN loss, at IN1 and IN2 the HNC group sepa-

Figure S9: The benzonitrile ${ }^{++}$potential energy surface resulting in $m / z 76$ by loss of HNC. Both meta- and ortho-benzyne ${ }^{+}$are presented
rates from the molecule without any reconfiguration, resulting in ortho- and meta-benzyne ${ }^{-+}$ + HNC, respectively.
$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$ loss is the only found dissociation pathway to result in a cationic fragment still containing the nitrogen atom of the nitrile group. Within the photon energy range used for this work, this channel does not reach its maximum fractional abundance. The final fragment being formed after dissociation are cyanodiacetylene ${ }^{\cdot+}\left(\mathrm{HC}_{5} \mathrm{~N}^{+}\right)$and ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. This pathway (shown in Fig. 10) starts by hydrogen migration from C 6 to C 1 via TS6 at 2.52 eV . The subsequent intermediate state $\mathbf{I N} 6$ sits at an energy of 2.17 eV , with both the migrated

Figure S10: The benzonitrile ${ }^{\cdot+}$ potential energy surface resulting in $m / z 75\left(\mathrm{HC}_{5} \mathrm{~N}^{++}\right)$.
hydrogen and the nitrile group sticking out-of-plane. This hydrogen then migrates further
to C2 over TS7 at 2.51 eV , resulting in IN7 at 1.84 eV with both hydrogens at C2 now sticking out-of-plane. Now, the H atom at C5 migrates to C 4 , which results in 4.96 eV of required energy to traverse TS8, eventually ending up at intermediate state IN8 at 4.70 eV . One of the hydrogens of C 4 then migrates further to C 3 via TS9 at 4.61 eV to form the intermediate state IN9 at 3.52 eV where two hydrogens sit on both C 2 and C 3 coming from C6 and C5, respectively. The computed CBS-QB3 energy for IN8, however, is slightly higher in comparison to TS9. Through the imaginary frequency of TS9 it is confirmed that it indeed leads to IN9. CBS-QB3 utilizes the extrapolated wave function theory in order to determine the electronic energy of a molecular geometry, which is established by density functional theory. This can result in the calculated energy of a transition state being lower than that of the following intermediate state. TS10 is subsequently traversed at 4.48 eV due to the bond breaking of C 1 and C 2 , thus opening the phenyl ring. However, this ring is closed right after when C 2 binds to C 6 , therefore creating the five-membered ring structure of IN10 which sits at 4.26 eV . Breaking the bond between C2 and C6 via TS11 at 4.63 eV , causes the ethylene group to rotate and to bind both C 2 and C 3 to C 4 , resulting in IN11 at 3.37 eV . Separating the ethylene group from the molecule, results in the formation of cyanodiacetylene ${ }^{++}$and ethylene without a reverse barrier.
$\mathbf{H}_{2} \mathbf{C N}$ loss is also considered in this section. The energy of this pathway (shown in Fig. 11) is 0.01 eV higher than the pathway to $\mathrm{C}_{2} \mathrm{H}_{4}$ loss and therefore deemed to not be energetically favourable. However, since the energy difference is so little it will be described here. $\mathrm{H}_{2} \mathrm{CN}$ loss follows a similar path as HCN loss up to IN5, but from here an H atom migration occurs over TS31 at 5.01 eV to form the intermediate IN29 at 3.23 eV . Next, IN30 at 3.02 eV is formed over TS32 at 4.69 eV . Lastly, by elongating the $\mathrm{C}-\mathrm{N}$ bond in IN30, $c-\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$and $\mathrm{H}_{2} \mathrm{CN}^{\cdot}$ are obtained at 5.31 eV . This is also the rate-limiting step and takes place without a reverse barier.
$\mathbf{H C}_{\mathbf{3}} \mathbf{N}$ loss shows up in the mass spectra at $m / z 52$ at relatively low photon energy $(15.7 \mathrm{eV})$. The lowest pathway found leads to the formation of methylene-cyclopropene ${ }^{\cdot+}+$

Figure S11: The benzonitrile ${ }^{++}$potential energy surface resulting in $m / z 75\left(c-\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}\right)$.
cyanoacetylene. The mechanism is shown in Fig. S12 and starts by the H atom migration from C4 to C3, crossing TS12 at 2.20 eV and resulting in IN12 at 1.82 eV . The next step is to break the C1 and C6 bond and cross TS13 which is the rate-limiting transition state corresponding to ring opening and is located at 3.69 eV , resulting in IN13 at 3.13 eV . Next, a rotation takes place around the $\mathrm{C} 2-\mathrm{C} 3$ bond via TS14 at 3.19 eV , resulting in IN14 at 3.19 eV . From here, the C2 and C3 bond can be broken by elongation, over TS15 at 4.14 eV , resulting in methylene-cyclopropene ${ }^{\cdot+}$ and cyanoacetylene at 4.04 eV . TS15 happens to be the rate-limiting step of this dissociation pathway.
$\mathbf{H}_{\mathbf{2}} \mathbf{C}_{\mathbf{3}} \mathbf{N}$ loss (shown in Fig. S12) leads to the formation of $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}^{+}$at $m / z 51$ and cyanovinyl', and follows the same initial step as the $\mathrm{HC}_{3} \mathrm{~N}$ loss channel. However, instead of ring opening from IN12, an H atom on C 3 moves to C 2 via TS16 at 2.27 eV . This results in IN15 at 1.82 eV . Next, the H atom on C5 migrates towards the neighboring C6 over TS17 at an energy of 4.78 eV and results in IN16 at 4.09 eV . Ring opening at C2 and C3 over TS18 5.25 eV results in $\mathbf{I N} 17$ at 3.81 eV . From here, IN18 at 2.63 eV is formed over TS19 at 4.15 eV . An internal rotation around the $\mathrm{C}-\mathrm{C}$ bond takes place via TS20 at 3.00 eV , resulting in IN19 at 2.54 eV . By elongating said C-C bond, the transition state TS21 is traversed at 5.07 eV , which results in $\mathbf{I N} 20$ at 4.74 eV , where the molecule only has an $\mathrm{N}-\mathrm{H}$ bond. Breaking this bond results in the formation of the two fragments at 5.40 eV .

Figure S12: The benzonitrile ${ }^{\cdot+}$ potential energy surface leading to the $m / z 50$ (brown), 51 (yellow), and 52 (orange) fragment ions.
$\mathbf{C H}_{\mathbf{2}} \mathbf{C H C N}$ loss is the dominant dissociation channel from 18.1 eV onward and results in an ion with $m / z 50$ that exhibits a maximum of about 30% around 19.75 eV . The final products found for this channel are diacetylene ${ }^{\cdot+}$ and acrylonitrile, and the pathway is displayed in Fig. S12. This loss channel shows a similar lowest energy pathway to $\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{~N}$ loss. Instead of ring opening from IN16, however, it proceeds via hydrogen migration of C6 to C1 over TS22 at 4.92 eV to form IN21 at 3.78 eV . Next, bond breaking of C1 and C6 ensures the ring opening via TS23 at 4.57 eV resulting in IN22 at 3.66 eV . Subsequently, a new ring is formed by moving the nitrogen to C6 via TS24 at 4.04 eV resulting in IN23 at 3.02 eV . The newly formed ring is broken by the rupture of the C2 and C3 bond via TS25 at 4.15 eV , forming intermediate $\mathbf{I N} 24$ at 2.80 eV . Finally, breaking the $\mathrm{C}-\mathrm{N}$ bond results in diacetylene ${ }^{\cdot+}$ and acrylonitrile at 4.89 eV .
$\mathbf{H}_{\mathbf{2}} \mathbf{C}_{\mathbf{4}} \mathbf{N}$ loss results in the formation of cyclopropenium ${ }^{+}$(at $m / z 39$) and $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{~N}^{\cdot}$ and is schematically displayed in Fig. S13. This pathway starts by H atom migration from

Figure S13: The benzonitrile ${ }^{++}$potential energy surface resulting in $m / z 39$.

C5 to C6 over TS26 at 2.21 eV , resulting in $\operatorname{IN} 25$ at 1.71 eV . Ring compression over TS27 at 2.78 eV , results in the formation of the five-membered ring intermediate IN26 at 0.46 eV . Subsequently, ring opening occurs over TS28 at 3.72 eV and results in intermediate IN27 at similar energy. Next, TS29 at 4.06 eV is crossed, resulting in IN28 at 3.67 eV . Lastly, separating the cyclic species from the $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{~N}$ moiety via TS30 at 4.31 eV , results in cyclopropenium ${ }^{+}+\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{~N}^{\cdot}$ at 4.09 eV .

(Bicyclic) meta-benzyne molecular orbitals

Molecular orbitals (MOs) of meta-benzyne and bicyclic meta-benzyne (BMB) will be presented in this section. Fig. 14 displays the singly occupied MO (SOMO) of the meta-benzyne and BMB cations, and the highest occupied MO (HOMO) and HOMO-1 of neutral metabenzyne. The meta-benzyne and BMB cation SOMOs are clearly different, and show a ${ }^{2} A_{1}$

Figure S14: The SOMO of the meta-benzyne and BMB cations, and the HOMO and HOMO-1 of neutral meta-benzyne.
and ${ }^{2} A_{2}$ symmetry, respectively. Thus, the two cationic isomers represent two minima with different wave function symmetries and are therefore clearly distinguishable. It seems that ionization out of the neutral HOMO leads to the BMB cation, while ionization out of the

HOMO-1 results in the meta-benzyne cation.

References

(1) Kaiser, D.; Reusch, E.; Hemberger, P.; Bodi, A.; Welz, E.; Engels, B.; Fischer, I. The ortho-benzyne cation is not planar. Phys. Chem. Chem. Phys. 2018, 20, 3988-3996.

