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Figure S1. Representation of the QM and MM regions in the QM/MM calculations (a) QM
and MM division. The QM atoms are shown in sticks and the MM atoms are shown in lines.

(b) atoms included in the QM calculations.
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Figure S2. (A) RMSD plot of LbADH in complex with the substrate poses that lead to the
major product (2R, 3R) (in blue), the minor product (25,3S) (in orange) and the inaccessible
product (2S, 3R) (in grey). (B) RMSF plot of the protein backbone atoms of the enzyme in
complex with the substrate poses that lead to the major product (2R, 3R) (in blue), the minor

product (25,3S) (in orange) and the inaccessible product (25, 3R) (in grey).
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Figure S3. The distances between the substrate and the ADH enzyme from MD simulations.
(A) Distance between Glu144 and Tyr189 indicates the presence of hydrogen bond in the major
product (2R, 3R) and the absence of the hydrogen bond in the minor product (2S5,3S); (B)
Distance between Thr192 oxygen and NADPH nitrogen indicates the presence of hydrogen
bond in the major product (2R, 3R) and the absence of the hydrogen bond in the minor product
(25,35); (C) Distance between Tyrl55 and the substrate carbonyl oxygen indicates the
formation of stable hydrogen bonds; (D) Distance between Ser142 and the substrate carbonyl

oxygen indicates the formation of stable hydrogen bonds.
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Figure S4. Free energy profile for (A) the major product (2R, 3R) and (B) the minor product

(25,3S). Geometries were optimized at B3LYP and M06-2X with the 6-31G* basis set.
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Figure S5. Free Energy Profile of the inaccessible product (2S,3R). (A) Geometries were
optimized at B3LYP-D3(BJ), M06-2X-D3 and ®B97X-D with the 6-31G* basis set. (B)

Geometries were optimized at B3LYP and M06-2X with the 6-31G* basis set.
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Figure S6. IRC analysis for the two transition states TS1 and TS2 in the major product (2R,

3R) and the minor product (2S5, 3S).
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Figure S7. Free energy profile for the enzyme-substrate complexes with the substrate poses
leading to the inaccessible product (2S, 3R). Single point energy corrections were conducted
with large basis sets 6-311+G(2d,2p) and def-2TZVPP based on the optimized geometries

obtained at (A) B3LYP-D3(BJ)/6-31G* and (B) M06-2X-D3/6-31G*.
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Figure S8. Optimized structures of the inaccessible product (2S,3R). Geometries were

optimized at B3LYP-D3(BJ) funtional level with the 6-31G* basis set.
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Figure S9. Free energy profile for the enzyme-substrate complexes with the substrate poses

leading to (A) (2R, 3R) or (B) (25, 3S) product. Single point energy corrections were conducted

with large basis sets 6-311+G(2d,2p) and def-2TZVPP based on the optimized geometries

obtained at M06-2X-D3/6-31G*.
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