

Figure S1. SEM images of (a) nickel foam; (b, c) SEM image of 0.8% Nd-CoMoO4@NiMoO4 under different magnification on nickel foam.

Figure S2. (a) XRD patterns of XRD of different Nd content in products; (b) corresponding amplified patterns of the diffraction peak around 32° .

Figure S3. Schematic diagram of three-electrode test using 0.8% Nd-CoMoO4@NiMoO4 as working electrode.

Figure S4. (a) CV curves of the 0.5% Nd-CoMoO₄@NiMoO₄, 0.8% Nd-CoMoO₄@NiMoO₄ and 1.2% Nd-CoMoO₄@NiMoO₄ at a scan rate of 4 mV/s; (b) Charge and discharge of the 0.5% Nd-CoMoO₄@NiMoO₄, 0.8% Nd-CoMoO₄@NiMoO₄ and 1.2% Nd-CoMoO₄@NiMoO₄; (c) Plot of the current

density against the specific capacitance of 0.5% Nd-CoMoO4@NiMoO4; (d) Plot of the current density against the specific capacitance of 1.2% Nd-CoMoO4@NiMoO4.

Crystal structure before doping crystal structure after doping

Figure S5. Crystal structure of rare earth element Nd before and after doping.

Figure S6. Rate and cycle performance of 0.8% Nd-CoMoO₄@NiMoO₄ under different current densities.

Figure S7. (a) SEM images of CNTs; (b) TEM image of CNTs; (c) charge and discharge of CNTs at different current densities; (d) Plot of the current density against the specific capacitance of CNTs.

Figure S8. UV-Vis DRS images of 0.8% Nd-CoMoO4@NiMoO4 and CoMoO4@NiMoO4.

Figure S9. Photocatalytic mechanism diagram.

Figure S10. UV absorption spectra for (a) RhB; (b) MB; (c) MO and (d) CR aqueous solution during photodegradation with CoMoO4@NiMoO4.

Figure S11. Degradation rate of RhB, CR, MB and MO to different masking agents.

The device name	Current density	specific capacitance	Cycle stability	Ref
β-CoMoO4//AC	1 A/g	27.7 F/g	92%(8000)	[68]
NiMoO4//AC	1 A/g	151.7 F/g	97.7%(2000)	[69]
NiMoO4//AC	1 mA cm^{-2}	156.25 F/g	83.6%(6000)	[70]
MnCo2O4@NiMoO4//AC	1 A/g	118.27 F g	93%(8000)	[71]
NiMoO4-CoMoO4//G-ink	1 A/g	104.1 F/g	95.88%(5000)	[72]
CoMoO4+NiMoO4//CNTs)	1 A/g	142 F/g	97.7%(10 000)	[73]
MnMoO4@CNF//AC	0.2	102.56 F/g	92.1%(5000)	[74]
CoMoO4@NiCo2S4//AC	5 mA cm^{-2}	182 F/g	84%(5000)	[75]
0.8% Nd-CoMoO4@NiMoO4//CNTs	1 A/g	262 F/g	99.2%(3000)	This paper

Table S2 Degradation efficiency of dyes by materials							
Materials	degrada dye time	degradation	degradation rate	Catalyst	Dye conc.	Cyclic stability	Ref
		time		dose	vol. (mL)		
g-C3N4/TiO2/α-Fe2O3	RhB	50 min	95.7%	50 mg	50 mg/L (100 mL)	>92% (5)	[83]
Ag ₂ O/g-C ₃ N ₄ /TiO ₂	RhB	60 min	94.5%	50 mg	50 mg/L (100 mL)	Nearly 93% (5)	[84]
0.8% Nd-CoMoO4@NiMoO4	RhB	90 min	97.2%	40 mg	50 mg/L (100 mL)	96% (50)	This paper
ZnO	CR	5 h	> 95%	30 mg	20 mg/L (10 mL)	Nearly 84% (3)	[85]
Ag-MgO	CR	120 min	80%	10 mg	10 mg/L (100 mL)		[86]
0.8% Nd-CoMoO4@NiMoO4	CR	30 min	96.4%	40 mg	50 mg/L (100 mL)	98.5% (50)	This paper

Table S1 Electrochemical performance comparison of the Devices

ZnCo ₂ O ₄	MB	40 min	98.8%		40 mg/L (200 mL)	98.5% (15)	[87]
ZnO-SnO ₂	MB	60 min	96.53%	0.2 g	20 mg/L (10 mL)	over 85%	[88]
0.8% Nd-CoMoO4@NiMoO4	MB	25 min	98.6%	40 mg	50 mg/L (100 mL)	98% (50)	This paper
TiO ₂ @Cd-MOF	МО	90 min	97.1%	10 mg	10 mg/L (10 mL)	85.1% (3)	[89]
Au-TiO ₂	MO	20 min	94%	5 mg	250 mg/L (10 mL)		[90]
0.8% Nd-CoMoO4@NiMoO4	МО	80 min	99.3%	40 mg	50 mg/L (100 mL)	96.2% (50)	This paper

Table S3 Kinetic parameters of photocatalytic degradation of 0.8% Nd-CoMoO4@NiMoO4					
dyes	<i>k</i> (min)	r^2			
МО	3.98 x 10 ⁻³	0.9986			
RhB	3.14 x 10 ⁻³	0.9958			
CR	3.59 x 10 ⁻³	0.9976			
MB	3.79 x 10 ⁻³	0.9982			