Electronic Supplementary Information

Detailed mechanism and kinetics of reactions of *anti*- and *syn*-CH₃CHOO with HC(O)OH: Infrared spectra of conformers of hydroperoxyethyl formate

Bedabyas Behera^a and Yuan-Pern Lee*^{ab}

^aDepartment of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300093, Taiwan.

^bCenter for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan

Emails: bedabyas88@gmail.com (BB); yplee@nycu.edu.tw (YPL)

Table of Contents

Section SA Reaction mechanism and error analysis of the rate coefficient k_1 for
CH ₃ CHOO + HC(O)OH S1
Table S1 Cartesian coordinates of optimized geometries of six conformers of
hydroperoxyethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method S3
Table S2 Cartesian coordinates of optimized geometries of four conformers of
hydroxylated secondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ
method S4
Table S3 Cartesian coordinates of optimized geometries of four pre-reaction complexes
of CH ₃ CHOO and HC(O)OH predicted with the B3LYP/aug-cc-pVTZ method S5
Table S4 Cartesian coordinates of optimized geometries of C2H5OOH, C2H3OOH-1,
and C ₂ H ₃ OOH-2 predicted with the B3LYP/aug-cc-pVTZ method S6
Table S5 Cartesian coordinates of optimized geometries of four conformers of formic
acetic anhydride (FAA) and two conformers of formic acid anhydride (FAN)
predicted with the B3LYP/aug-cc-pVTZ method S7
Table S6 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm ⁻¹)
and IR intensities (km mol ⁻¹ , listed parenthetically) of conformers P1 and P2 of
hydroperoxylethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method
S8
Table S7 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm ⁻¹)
and IR intensities (km mol ^{-1} , listed parenthetically) of conformer P3 of
hydroperoxylethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method
S9
Table S8 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm ⁻¹)
and IR intensities (km mol ⁻¹ , listed parenthetically) of conformers Q1 and Q2 of
hydroxylated secondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ
method S10
Table S9 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm ⁻¹)
and IR intensities (km mol ⁻¹ , listed parenthetically) of conformers P1* and P2* of
hydroperoxyethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method
S11
Table S10 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm^{-1})
and IR intensities (km mol ^{-1} , listed parenthetically) of conformer P3* of
hydroperoxyethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method
S12
Table S11 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm^{-1})
and IR intensities (km mol ^{-1} , listed parenthetically) of conformers Q1* and Q2* of
hydroxylated secondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ
method \$13
Table S12 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm ⁻¹)
and IR intensities (km mol ^{-1} , listed parenthetically) of C ₂ H ₅ OOH predicted with the
B3LYP/aug-cc-pVTZ methodS14
Table S13 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm ⁻¹)
and IR intensities (km mol ⁻¹ , listed parenthetically) of C ₂ H ₃ OOH-1 and C ₂ H ₃ OOH-
2 predicted with the B3LYP/aug-cc-pVTZ methodS15

Table S14 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a-, b-, and c-types of conformers P1 and P2 of HPEF predicted with
the B3LYP/aug-cc-pVTZ methodS16
Table S15 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a -, b -, and c -types of the conformer P3 of HPEF predicted with the
B3LYP/aug-cc-pVTZ methodS17
Table S16 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a -, b -, and c -types of conformers Q1 and Q2 of HSOZ predicted
with the B3LYP/aug-cc-pVTZ methodS18
Table S17 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a -, b -, and c -types of conformers P1* and P2* of HPEF predicted
with the B3LYP/aug-cc-pVTZ methodS19
Table S18 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a -, b -, and c -types of the conformer P3* of HPEF predicted with
the B3LYP/aug-cc-pVTZ methodS20
Table S19 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a-, b-, and c-types of conformers Q1* and Q2* of HSOZ predicted
with the B3LYP/aug-cc-pVTZ methodS21
Table S20 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a_{-} , b_{-} , and c_{-} types of C ₂ H ₅ OOH predicted with the B3LYP/aug-cc-
pVTZ method \$22
Table S21 Rotational parameters of the ground state and vibrationally excited states (v
= 1) and ratios of a -, b -, and c -types of C ₂ H ₃ OOH-1 and C ₂ H ₃ OOH-2 predicted with
the B3LYP/aug-cc-pVTZ methodS23
Table S22 Comparison of experimentally observed vibrational wavenumbers and
relative IR intensities of FAA (F1) with literature valuesS24
Table S23 Experimental conditions and first-order rate coefficients k^{I} and $k^{I'}$ of the
reaction CH ₃ CHOO + HC(O)OH in four sets of experiments S25
Table S24 The kinetic model employed in fitting the temporal profiles of bands A_6 and
A ₇ in the reaction CH ₃ CHOO + HC(O)OHS26
Fig. S1 Geometries of species observed in this workS27
Fig. S2 Geometries of possible conformers of hydroperoxyethyl formate (HPEF) in the
reaction of CH ₃ CHOO + HC(O)OHS28
Fig. S3 Potential-energy curve calculated as a function of the COCO dihedral angle for
the interconversion among conformers of HPEF (P1-P3) produced from anti-
CH ₃ CHOO + HC(O)OHS29
Fig. S4 Potential-energy curve calculated as a function of the COCO dihedral angle for
the interconversion among conformers of HPEF (P1*-P3*) produced from syn-
CH ₃ CHOO + HC(O)OHS30
Fig. S5 Potential-energy curves calculated for the interconversion of HPEF conformers
between P2*/P3* and P2 S31
Fig. S6 Geometries of possible conformers of hydroxylated secondary ozonide (HSOZ)
produced in the reaction of CH ₃ CHOO + HC(O)OHS32
Fig. S7 Geometries of pre-reactive complexes and products other than dehydrated
products in the reaction of CH ₃ CHOO + HC(O)OHS33
Fig. S8 Geometries of conformers of formic acetic anhydride (FAA) and formic

anhydride (FAN) produced in the reaction of CH ₃ CHOO + HC(O)OHS	334
Fig. S9 Geometries of transition states in the reaction of $anti$ -CH ₃ CHOO + HC(O)OH - S	535
Fig. S10 Geometries of transition states in the reaction of syn -CH ₃ CHOO + HC(O)OH S	536
Fig. S11 Linear fit of experimental wavenumbers vs. calculated harmonic vibrational	
wavenumbers of hydroperoxylmethyl formate (HPMF)S	\$37
Fig. S12 Observed spectra in region 770–1950 cm ⁻¹ during photolysis at 308 nm (5 Hz,	
180 mJ pulse ⁻¹) of a flowing mixture of $CH_3CHI_2/O_2/HC(O)OH$ (0.064/53.9/0.020,	
$P_{\rm T} = 54$ torr) recorded with continuous scan	538
Fig. S13 Comparison of temporal evolution of bands A ₆ and A ₇ S	539
Fig. S14 Comparison of the observed spectra in groups C, D, and E with simulated IR	
spectra of conformers of HPEFS	540
Fig. S15 Comparison of the observed spectra in groups C, D, and E with simulated IR	
spectra of conformers of HSOZ (Q1, Q2, Q1*, and Q2*), C ₂ H ₅ OOH, C ₂ H ₃ OOH-1,	
and C ₂ H ₃ OOH-2 according to anharmonic vibrational wavenumbers	\$41
Fig. S16 Comparison of bands A12 and A13 observed in region 3200–3900 cm ⁻¹ with	
simulated IR spectra of possible conformers of HPEF (P1-P3, P1*-P3*), HSOZ	
(Q1–Q2, Q1*–Q2*), C ₂ H ₅ OOH, C ₂ H ₃ OOH-1, and C ₂ H ₃ OOH-2S	\$42
Fig. S17 Exponential fit of the decay of P2*/P3*S	\$43
Fig. S18 Fitted first-order rate coefficients k_1^1 (A ₆) and k_1^1 (A ₇) as a function of	
[HC(O)OH] ₀	\$44
Fig. S19 Temporal profiles for the decay of CH ₂ CHI due to pumpingS	\$45

A. Section SA Reaction mechanism and error analysis of the rate coefficient k_1 for

CH₃CHOO + HC(O)OH

The kinetic model, shown in Table S24 (ESI[†]), considered only the important reactions including the branching of the formation reaction of CH₃CHI + O₂, the self-reaction of CH₃CHOO, the reaction of CH₃CHIOO + CH₃CHOO, the main reaction of interest CH₃CHOO + HC(O)OH to form HPEF, and the conversion of HPEF to FAA. Other reactions such as reactions of CH₃CHOO with I or IO, wall loss, unimolecular decay of CH₃CHOO, and diffusion loss, which have rate coefficients much less than 1000 s⁻¹, are not included in the model because we are considering a reaction period less than 40 µs. Even for the conversion of HPEF to FAA, reaction 7 in Table S24 (ESI[†]), with a rate coefficient of ~1420 s⁻¹, it has negligible effect on the rise of HPEF except in a few experiments with very small [HC(O)OH]₀, which has an effective pseudo-first-order rate coefficient of ~10⁵ s⁻¹. The small error in this rate coefficient, 70 s⁻¹ in fitting and perhaps 200 s⁻¹ after error analysis, hence has an even smaller effect.

The total rate coefficient of CH₃CHI + O₂, 8.6×10^{-12} cm³ molecule⁻¹ s⁻¹, was taken from Howes et al.;¹ a value of 8.0×10^{-12} cm³ molecule⁻¹ s⁻¹ was reported by Sheps et al.² For the branching involving the formation reaction CH₃CHI + O₂ \rightarrow CH₃CHOO and CH₃CHIOO, reactions 1–3 in Table S24 (ESI[†]), estimated yields of CH₃CHOO are ~71 and 64 % at 40 and 80 Torr and those of CH₃CHIOO are ~8 and 15 % at 40 and 80 Torr, respectively, according to our unpublished work; about 21 % proceeds to fragmentation and formation of other products. The production of CH₃CHIOO reduces the concentration of CH₃CHOO. When we assumed the concentration of CH₃CHOO to be [CH₃CHI]₀, that is, no branching in the formation reaction, the resultant first-order rate coefficient $k_1^{I'}$ decreased by ~7 % and 1 % at the smallest and the largest [HC(O)OH]₀ in this work. The effect of the yield of CH₃CHOO is small because the main reaction $CH_3CHOO + HC(O)OH$ is very rapid, other reactions have limited effect on the main reaction.

Because the presence of CH₃CHIOO, we also included the reaction CH₃CHOO + CH₃CHIOO, reaction 5 in Table S24 (ESI[†]), even though the rate coefficient has not been reported. When we included this reaction and assumed a rate coefficient of 1×10^{-10} cm³ molecule⁻¹ s⁻¹ for this reaction, the fitted first-order rate coefficient $k_1^{1'}$ decreased by ~3 % at the smallest [HC(O)OH]₀ and remained nearly the same at larger [HC(O)OH]₀.

Rate coefficients for reactions involving I are also unknown. However, because the system has a significant amount of HC(O)OH and its reaction with CH₃CHOO is rapid, I atoms with concentration less than 25 % of HC(O)OH in most cases will not be able to compete with HC(O)OH efficiently. If we include the reactions CH₃CHOO + I using a rate coefficient similar to that of CH₂OO + I (9.0×10^{-12} cm³ molecule⁻¹ s⁻¹)³ and CH₃CHIOO + I using a rate coefficient similar to that of CH₂IOO + I (3.5×10^{-11} cm³ molecule⁻¹ s⁻¹)⁴ in the model, the fitted first order rate coefficient $k_1^{I'}$ decreased by 3 and 0 % at the smallest and largest [HC(O)OH]₀ employed in this work. We hence did not include these reactions in our model.

Considering the errors in the estimation of $[CH_3CHI]_0$ (error <30 % transforms into error <7 % in k_1^{Γ}), error resulting from uncertainties in the rate coefficient of the self-reaction of CH₃CHOO (k_{self} in Table S24, error 25 % transforms into error ~3 % in k_1^{Γ}), error due to uncertainties in other reactions (~10 %), and the fitting error (~15 %), the error in k_1^{Γ} is estimated to be ~20 %. When we combine the fitting error in Fig. 12 (~20 %) and the error in the absolute concentration of HC(O)OH (20 %), we estimated the overall uncertainty to be ~35 %. A rate coefficient for reaction CH₃CHOO + HC(O)OH at 298 K is hence reported to be $k_1 = (2.1 \pm 0.7) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

	X	у	Z.		X	у	Z
		HPEF (P1)			HPEF (P2)	
01	0.24707	1.97363	-0.13302	01	1.95862	-1.21100	-0.36298
O2	-0.61652	1.00822	0.51422	O2	1.67065	0.12561	0.11659
C3	-0.78647	-0.11145	-0.28648	C3	0.34693	0.42677	-0.19009
H4	-0.55502	0.13546	-1.32111	H4	0.10024	0.10774	-1.20016
C5	-2.18156	-0.65098	-0.08336	C5	0.16186	1.91011	0.03037
H6	-2.36381	-0.81959	0.97699	H6	0.42166	2.17466	1.05419
H7	-2.90284	0.07303	-0.45629	H7	0.79766	2.46594	-0.65622
H8	-2.30238	-1.59128	-0.61716	H8	-0.87678	2.17347	-0.15828
09	0.11325	-1.22057	0.10929	O9	-2.24717	-0.32474	-0.69224
C10	1.43027	-1.06266	0.10104	C10	-1.72310	-0.65875	0.33443
H11	1.91418	-2.01073	0.36135	H11	-2.19859	-1.27965	1.10404
O12	2.04738	-0.05360	-0.14378	O12	-0.48402	-0.33789	0.73338
H13	1.10697	1.50228	-0.10470	H13	1.85697	-1.72673	0.45018
		HPEF (P3	5)			HPEF (P1*)	1
01	-2.09872	-0.95222	-0.04812	01	0.96886	1.56536	0.18855
O2	-1.18301	0.02008	-0.61657	O2	0.94308	0.59944	-0.88873
C3	-0.45550	0.59620	0.42492	C3	0.67639	-0.68236	-0.44080
H4	-1.11145	0.76809	1.27570	O4	-1.59959	0.84619	0.50291
C5	0.14834	1.88313	-0.10010	C5	-1.72113	-0.24498	-0.00350
H6	0.69416	1.71392	-1.02285	H6	-2.69383	-0.73445	-0.12794
H7	-0.65260	2.59859	-0.27785	07	-0.77297	-1.02917	-0.49307
H8	0.82473	2.29390	0.64787	H8	0.00991	1.62788	0.39231
09	1.80340	-0.52627	-0.89310	H9	1.06059	-1.31610	-1.23822
C10	1.55030	-0.78557	0.24845	C10	1.23741	-1.06383	0.90937
H11	2.14445	-1.46333	0.87643	H11	2.30346	-0.84379	0.92564
O12	0.52143	-0.32831	0.98488	H12	0.75961	-0.51062	1.71241
H13	-1.70294	-1.77992	-0.35556	H13	1.08927	-2.13034	1.06813
		HPEF (P2	*)			HPEF (P3*)	i
01	-1.97867	-1.04911	0.30033	01	2.28764	-0.59264	-0.29344
O2	-1.00413	-0.72550	-0.72649	O2	1.37478	-0.37879	0.81498
C3	-0.28683	0.41928	-0.35503	C3	0.25081	0.31958	0.37387
O4	2.39217	-0.20251	-0.61247	O4	-2.48631	0.12869	0.41687
C5	1.87751	-0.20635	0.46893	C5	-1.85650	-0.58350	-0.31539
H6	2.39417	-0.45514	1.40406	H6	-2.29412	-1.34022	-0.97776
O7	0.59619	0.10194	0.75153	07	-0.52408	-0.58669	-0.46478
H8	-1.52500	-1.76829	0.76182	H8	2.05193	-1.49564	-0.55036
H9	0.31991	0.60716	-1.23978	H9	-0.30660	0.49345	1.29379
C10	-1.12934	1.60617	0.04574	C10	0.53012	1.60091	-0.37534
H11	-1.83996	1.82894	-0.74854	H11	1.15588	2.24845	0.23725
H12	-1.67411	1.40162	0.96332	H12	1.03992	1.39586	-1.31277
H13	-0.48755	2.47253	0.19801	H13	-0.40985	2.11154	-0.57809

Table S1 Cartesian coordinates of optimized geometries of six conformers of hydroperoxyethyl

 formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method

	X	у	Z.		X	у	Z		
HSOZ (Q1)					HSOZ (Q2)				
01	-0.83647	1.20299	-0.15638	01	-0.78202	1.15715	-0.05975		
O2	0.46132	1.06545	0.49615	O2	0.65697	1.19125	0.08789		
C3	1.06115	0.11898	-0.36618	C3	0.99946	-0.09636	-0.39764		
H4	-1.40999	-0.83969	1.37404	H4	-2.11951	-0.58064	-1.14721		
O5	-1.95574	-0.73647	0.58432	05	-2.27305	-0.55934	-0.19345		
C6	-1.20042	-0.15542	-0.40617	C6	-1.12889	-0.14695	0.43242		
O7	0.02386	-0.83150	-0.58835	O7	0.00547	-0.94467	0.16896		
H8	-1.80975	-0.14232	-1.30856	H8	-1.33355	-0.13075	1.50232		
H9	1.31263	0.60282	-1.31625	H9	0.90437	-0.10637	-1.48943		
C10	2.25651	-0.50456	0.30306	C10	2.38288	-0.46589	0.06374		
H11	2.67114	-1.27245	-0.34795	H11	2.62268	-1.46955	-0.28386		
H12	3.02020	0.25166	0.47874	H12	3.11112	0.22914	-0.35260		
H13	1.96862	-0.95788	1.24977	H13	2.43522	-0.44174	1.15042		
		HSOZ (Q1*	⁽)		H	HSOZ (Q2*))		
01	0.43822	1.02942	0.61098	01	-0.53061	0.99923	-0.59299		
O2	-0.38922	1.08390	-0.59294	O2	0.71725	1.27662	0.08678		
C3	-1.00091	-0.19843	-0.54787	C3	1.12894	-0.03551	0.48419		
H4	2.04840	-0.03526	-1.12116	H4	-1.15371	0.09235	0.31916		
O5	2.22059	-0.27286	-0.20139	O5	-0.08697	-0.70316	0.79991		
C6	1.03452	-0.25443	0.49639	C6	1.71153	0.11361	1.39556		
O7	0.04782	-1.05963	-0.11133	O7	1.91363	-0.76813	-0.58064		
H8	1.25367	-0.58246	1.51080	H8	2.12161	-1.78559	-0.25003		
H9	-1.24249	-0.43827	-1.58494	H9	1.34947	-0.80527	-1.51117		
C10	-2.21114	-0.26814	0.35620	C10	2.85992	-0.25783	-0.75906		
H11	-2.58260	-1.29193	0.39065	H11	-2.10694	-0.62979	-0.33541		
H12	-1.95235	0.04923	1.36452	H12	-1.67685	-1.16920	-1.01208		
H13	-2.99875	0.37802	-0.03079	H13	-1.64073	0.62881	1.13421		

Table S2 Cartesian coordinates of optimized geometries of four conformers of hydroxylatedsecondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ method

	х	У	Z		Х	У	Z
		C2				C3	
O1	0.20222	1.77183	-0.18902	01	-0.10237	1.70945	0.08039
O2	1.11389	0.90437	0.38971	O2	-1.19081	0.94234	-0.30245
C3	1.56384	-0.02459	-0.31905	C3	-1.49579	-0.03374	0.41998
H4	-2.55176	-0.76943	1.22953	H4	2.77685	-0.62183	1.08271
O5	-2.69404	-0.08068	0.56186	O5	2.78213	-0.02048	0.32220
C6	-1.77642	-0.24293	-0.40023	C6	1.71503	-0.30535	-0.43598
O7	-0.96310	-1.13481	-0.41889	O7	0.93635	-1.19910	-0.20582
H8	-1.88659	0.52366	-1.16750	H8	1.67431	0.35832	-1.30024
H9	1.23633	-0.06430	-1.35150	H9	-0.91572	-0.18195	1.32368
C10	2.50000	-0.99892	0.27284	C10	-2.60369	-0.91757	0.01206
H11	2.06850	-1.99984	0.19300	H11	-2.21202	-1.92692	-0.13955
H12	3.43655	-1.00834	-0.29037	H12	-3.34975	-0.97846	0.80792
H13	2.70069	-0.76889	1.31617	H13	-3.06936	-0.56697	-0.90548
		C2*				C4*	
O1	0.98550	1.31637	-0.57236	01	0.57542	-1.43643	0.38441
O2	1.86642	0.95453	0.42229	O2	1.06613	-0.78657	-0.75135
C3	2.21173	-0.25604	0.48293	C3	1.63524	0.31483	-0.56353
H4	-1.87647	0.02919	-0.00508	H4	-2.08198	0.49334	-0.03827
O5	-1.61744	-1.13354	0.17816	O5	-1.17581	1.26362	-0.27862
C6	2.90288	-0.44754	1.29624	C6	1.96235	0.76986	-1.49276
O7	1.71969	-1.27571	-0.44314	O7	1.86301	0.90539	0.75591
H8	0.64007	-1.40805	-0.29003	H8	0.89414	1.21315	1.15838
H9	1.82629	-0.91106	-1.46826	H9	2.24954	0.13988	1.43171
C10	2.23780	-2.21947	-0.29760	C10	2.52780	1.76174	0.68908
H11	-3.11886	0.53630	0.03934	H11	-1.96616	-0.77888	0.27532
H12	-3.73014	-0.19095	0.23693	H12	-0.99142	-1.05789	0.31115
H13	-1.13152	0.80313	-0.22502	H13	-3.13667	0.79795	-0.06035

Table S3 Cartesian coordinates of optimized geometries of four pre-reaction complexes of CH₃CHOO and HC(O)OH predicted with the B3LYP/aug-cc-pVTZ method

	x	У	Z.		x	У	Z.
		C ₂ H ₅ OOH	ł		(C ₂ H ₃ OOH-1	
01	-1.81571	0.10850	-0.09439	01	1.70085	0.18984	0.07716
O2	-0.51010	-0.52490	-0.02883	O2	0.46646	-0.50806	-0.23953
C3	0.45998	0.51913	0.02153	C3	-0.57707	0.37051	-0.10431
H4	0.32858	1.17381	-0.84345	H4	1.89321	-0.17183	0.95459
C5	1.81836	-0.15506	0.00440	H5	-0.31073	1.40520	-0.27220
H6	1.94088	-0.81306	0.86440	C6	-1.80336	-0.06986	0.13544
H7	1.94972	-0.74250	-0.90365	H7	-2.62799	0.62568	0.12885
H8	2.60013	0.60409	0.03947	H8	-2.01041	-1.11722	0.30090
H9	0.31771	1.11049	0.93118				
H10	-2.20053	-0.18606	0.74221				
		C ₂ H ₃ OOH	-2				
01	-1.30682	-0.57482	-0.09609				
O2	-0.64566	0.70923	-0.01746				
C3	0.71126	0.55494	0.01208				
H4	1.14167	1.54886	0.02959				
C5	1.42355	-0.56118	0.01010				
H6	0.96989	-1.53763	-0.02363				
H7	2.49920	-0.48529	0.03287				
H8	-1.79979	-0.56379	0.73649				

Table S4 Cartesian coordinates of optimized geometries of C_2H_5OOH , C_2H_3OOH -1, and C_2H_3OOH -2 predicted with the B3LYP/aug-cc-pVTZ method

Table S5 Cartesian coordinates of optimized geometries of four conformers of formic acetic anhydride (FAA) and two conformers of formic acid anhydride (FAN) predicted with the B3LYP/aug-cc-pVTZ method

	x	у	z		X	у	Z
		FAA (F1))			FAA (F2)	
C1	2.04832	-0.79923	0.00000	C1	2.04548	-0.48282	0.33450
H2	1.97791	-1.44254	-0.87724	H2	2.30356	-1.28553	-0.35553
H3	1.97792	-1.44253	0.87725	H3	1.88252	-0.93569	1.31349
H4	2.99219	-0.26387	-0.00002	H4	2.85088	0.24244	0.39130
C5	0.91569	0.17939	0.00000	C5	0.78821	0.19644	-0.11263
06	-0.29703	-0.50314	0.00000	O6	-0.21446	-0.76412	-0.35144
O7	0.99710	1.37289	0.00000	O7	0.62017	1.35689	-0.30542
C8	-1.47363	0.22033	-0.00001	C8	-1.54414	-0.47921	-0.15932
H9	-1.31355	1.30124	-0.00002	H9	-2.13317	-1.21935	-0.71355
O10	-2.52217	-0.33916	0.00000	O10	-1.98585	0.38118	0.53048
		FAA (F3))			FAA (F4)	
C1	0.85764	1.35143	0.24733	C1	1.31459	1.26817	0.00001
H2	0.34428	1.58054	1.17964	H2	0.90771	1.76256	0.88242
H3	0.29814	1.82791	-0.55594	H3	0.90777	1.76254	-0.88244
H4	1.87463	1.73196	0.26692	H4	2.39512	1.36846	0.00004
C5	0.91313	-0.12558	0.00740	C5	0.99308	-0.20305	0.00000
06	-0.24306	-0.87310	0.35762	O6	-0.34754	-0.59393	0.00001
O 7	1.85163	-0.74396	-0.37759	O7	1.80735	-1.07186	-0.00001
C8	-1.51119	-0.44162	0.14337	C8	-1.40307	0.27666	-0.00001
H9	-2.19869	-1.15917	0.60538	H9	-1.12433	1.33572	-0.00005
O10	-1.84306	0.53122	-0.46561	O10	-2.52405	-0.11920	0.00001
		anti-FAN	I			syn-FAN	
O 1	-2.13221	-0.09405	-0.00001	01	-1.43419	-0.82189	-0.18971
C 2	-0.97030	-0.33095	0.00001	C 2	-1.20528	0.29117	0.14616
O 3	1.76927	-0.68031	-0.00001	O 3	1.43419	-0.82189	0.18971
C 4	1.29260	0.41201	0.00000	C 4	1.20528	0.29117	-0.14616
H 5	1.85207	1.35344	-0.00001	H 5	1.92265	0.99529	-0.58235
O 6	-0.04730	0.70924	0.00001	O 6	0.00000	0.95820	0.00000
Η7	-0.50396	-1.31881	0.00003	Η7	-1.92264	0.99528	0.58238

Mada	F	21	P2				
Mode	Harmonic	Anharmonic	Scaled harm. ^a	Harmonic	Anharmonic	Scaled harm ^a	
ν_1	3499 (276)	3306	3361 (276)	3739 (41)	3555	3592 (41)	
v_2	3134 (7)	2992	3011 (7)	3133 (5)	3025	3010 (5)	
v_3	3129 (12)	3007	3006 (12)	3130 (11)	2990	3007 (11)	
v_4	3089 (5)	2955	2968 (5)	3102 (2)	2969	2980 (2)	
v 5	3055 (5)	2939	2935 (5)	3054 (5)	2952	2934 (5)	
ν_6	3049 (46)	2904	2929 (46)	3029 (53)	2883	2910 (53)	
v_7	1754 (306)	1726	1720 (306)	1784 (310)	1750	1749 (310)	
ν_8	1495 (72)	1449	1467 (72)	1491 (4)	1449	1463 (4)	
ν9	1488 (22)	1447	1461 (22)	1488 (5)	1447	1460 (5)	
v_{10}	1485 (8)	1449	1458 (8)	1414 (12)	1389	1388 (12)	
ν_{11}	1420 (11)	1383	1394 (11)	1401 (1)	1368	1376 (1)	
V 12	1406 (3)	1377	1380 (3)	1383 (7)	1359	1358 (7)	
V 13	1364 (8)	1329	1339 (8)	1380 (53)	1334	1355 (53)	
v_{14}	1356 (2)	1321	1331 (2)	1357 (19)	1332	1333 (19)	
V15	1223 (286)	1191	1202 (286)	1208 (78)	1175	1187 (78)	
v_{16}	1176 (41)	1150	1155 (41)	1176 (247)	1145	1156 (247)	
V17	1120 (111)	1089	1102 (111)	1125 (168)	1096	1106 (168)	
V 18	1059 (35)	1025	1042 (35)	1063 (51)	1036	1046 (51)	
V19	1050 (1)	1039	1032 (1)	1041 (1)	1017	1024 (1)	
v_{20}	974 (18)	948	959 (18)	961 (15)	936	945 (15)	
v_{21}	871 (26)	855	858 (26)	891 (27)	876	878 (27)	
v ₂₂	819 (20)	803	807 (20)	850 (67)	835	838 (67)	
V23	755 (91)	723		748 (16)	732		
v_{24}	622 (107)	570		549 (16)	541		
V25	536 (7)	511		504 (3)	498		
v_{26}	512 (6)	503		399 (4)	394		
V 27	347 (1)	336		330 (35)	442		
v_{28}	322 (7)	317		255 (96)	95		
V29	286 (14)	284		242 (21)	235		
V 30	250 (6)	221		212 (1)	315		
v ₃₁	219 (1)	250		202 (2)	84		
V 32	176 (7)	141		139 (4)	139		
V 33	79 (1)	83		49 (3)	49		

Table S6 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of conformers P1 and P2 of hydroperoxylethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method

^{*a*} Harmonic vibrational wavenumber scaled according to 0.9761 x + 7.9, in which x is the harmonic vibrational wavenumber for region 800–2000 cm⁻¹; scaling factor is 0.9607 x for region above 3000 cm⁻¹.

]		
Mode		A 1 .	Scaled
	Harmonic	Anharmonic	harmonic ^a
ν_1	3749 (42)	3571	3601 (42)
v_2	3158 (3)	3025	3034 (3)
V 3	3123 (10)	2989	3000 (10)
v_4	3094 (14)	2970	2972 (14)
V5	3059 (8)	2956	2939 (8)
ν_6	3014 (61)	2874	2896 (61)
v_7	1795 (291)	1757	1760 (291)
ν_8	1499 (5)	1454	1471 (5)
V 9	1485 (8)	1439	1457 (8)
v_{10}	1419 (1)	1381	1393 (1)
v_{11}	1414 (12)	1374	1388 (12)
V 12	1404 (5)	1346	1379 (5)
v_{13}	1379 (28)	1408	1354 (28)
v_{14}	1361 (41)	1295	1336 (41)
V15	1187 (120)	1157	1167 (120)
v_{16}	1149 (158)	1113	1130 (158)
V 17	1122 (248)	1094	1103 (248)
v_{18}	1067 (15)	1035	1049 (15)
v ₁₉	1043 (1)	1016	1026 (1)
V20	956 (9)	928	941 (9)
v_{21}	880 (36)	864	867 (36)
V22	816 (13)	804	804 (13)
V23	769 (58)	745	
v_{24}	555 (17)	542	
V25	516 (9)	510	
V 26	384 (2)	379	
V27	303 (5)	314	
v_{28}	234 (11)	236	
V29	217 (63)	185	
v ₃₀	202 (53)	255	
V 31	193 (4)	122	
V 32	140 (3)	157	
V33	62 (2)	39	

Table S7 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of conformer P3 of hydroperoxylethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method

Q1			Q2			
Mode	Harmonic	Anharmonic	Scaled harmonic ^a	Harmonic	Anharmonic	Scaled harmonic ^a
ν_1	3778 (40)	3602	3629 (40)	3765 (41)	3581	3617 (41)
v_2	3130 (14)	3004	3007 (14)	3131 (12)	3004	3008 (12)
V 3	3124 (6)	2988	3001 (6)	3121 (7)	2986	2998 (7)
v_4	3106 (17)	2967	2984 (17)	3092 (35)	2966	2970 (35)
v 5	3052 (6)	2945	2932 (6)	3051 (6)	2945	2931 (6)
ν_6	3006 (51)	2894	2888 (51)	2996 (54)	2886	2878 (54)
ν ₇	1488 (7)	1452	1460 (7)	1488 (3)	1444	1461 (3)
ν_8	1487 (5)	1448	1459 (5)	1486 (5)	1448	1458 (5)
V 9	1442 (35)	1406	1416 (35)	1448 (44)	1412	1421 (44)
v_{10}	1420 (62)	1389	1394 (62)	1425 (84)	1392	1399 (84)
V 11	1397 (15)	1364	1372 (15)	1400 (8)	1365	1374 (8)
V 12	1364 (17)	1335	1339 (17)	1361 (21)	1331	1337 (21)
V13	1308 (3)	1290	1285 (3)	1322 (28)	1308	1299 (28)
V 14	1288 (15)	1236	1266 (15)	1306 (4)	1248	1283 (4)
V15	1162 (30)	1133	1142 (30)	1160 (67)	1127	1140 (67)
v_{16}	1147 (58)	1115	1127 (58)	1159 (212)	1124	1139 (212)
V17	1121 (106)	1091	1102 (106)	1144 (91)	1111	1125 (91)
v_{18}	1117 (397)	1080	1099 (397)	1113 (181)	1083	1094 (181)
V19	994 (54)	965	978 (54)	998 (52)	974	982 (52)
v_{20}	941 (59)	911	927 (59)	967 (74)	932	952 (74)
V21	887 (29)	868	874 (29)	943 (9)	918	929 (9)
V 22	875 (2)	858	862 (2)	874 (5)	858	861 (5)
V23	849 (4)	826	837 (4)	852 (12)	832	839 (12)
V24	803 (23)	786		743 (30)		
V25	695 (5)	685		684 (6)		
V26	560 (18)	548		571 (16)		
V27	514 (9)	509		491 (1)		
V28	500 (17)	484		479 (37)		
V 29	316(1)	301		334 (51)		
V 30	298 (70)	361		279 (11)		
V 31	229 (8)	118		225 (12)		
V 32	197 (2)	241		200 (0)		
V33	98 (1)	76		78 (1)		

Table S8 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm^{-1}) and IR intensities (km mol⁻¹, listed parenthetically) of conformers Q1 and Q2 of hydroxylated secondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ method

	P1*			P2*			
Mode	Harmonic	Anharmonic	Scaled harmonic ^{<i>a</i>}	Harmonic	Anharmonic	Scaled harmonic ^a	
ν_1	3473 (293)	3257	3336 (293)	3748 (39)	3571	3601 (39)	
v_2	3149 (7)	3040	3025 (7)	3144 (5)	3028	3021 (5)	
v ₃	3127 (8)	3003	3005 (8)	3122 (11)	2999	2999 (11)	
v_4	3095 (6)	2988	2973 (6)	3098 (5)	2973	2976 (5)	
V 5	3060 (6)	2970	2940 (6)	3056 (7)	2960	2936 (7)	
ν_6	3045 (49)	2902	2926 (49)	3033 (51)	2889	2914 (51)	
v_7	1748 (285)	1710	1714 (285)	1794 (331)	1760	1759 (331)	
V 8	1494 (85)	1457	1466 (85)	1495 (2)	1450	1467 (2)	
V 9	1490 (15)	1447	1462 (15)	1484 (8)	1436	1457 (8)	
V 10	1485 (6)	1438	1457 (6)	1421 (26)	1397	1395 (26)	
v ₁₁	1419 (22)	1407	1393 (22)	1401 (3)	1365	1375 (3)	
v_{12}	1411 (2)	1372	1386 (2)	1395 (39)	1382	1369 (39)	
V 13	1398 (18)	1357	1372 (18)	1372 (34)	1312	1347 (34)	
v_{14}	1368 (12)	1330	1344 (12)	1349 (2)	1320	1324 (2)	
V15	1212 (231)	1186	1191 (231)	1186 (183)	1153	1165 (183)	
V 16	1163 (23)	1127	1143 (23)	1161 (108)	1130	1141 (108)	
v_{17}	1124 (130)	1096	1105 (130)	1105 (172)	1080	1086 (172)	
v_{18}	1058 (25)	1033	1041 (25)	1070 (97)	1042	1052 (97)	
V 19	1047 (3)	1032	1030 (3)	1042 (1)	1022	1025 (1)	
v_{20}	940 (14)	918	926 (14)	922 (24)	899	908 (24)	
v_{21}	854 (45)	838	841 (45)	865 (95)	843	852 (95)	
V22	829 (6)	821	817 (6)	838 (16)	826	825 (16)	
V ₂₃	712 (110)	734		754 (8)	743		
v_{24}	662 (84)	664		657 (9)	651		
V25	616 (26)	483		508 (27)	501		
v_{26}	469 (16)	468		382 (9)	380		
V27	421 (5)	420		309 (0)	318		
V28	315 (1)	325		249 (66)	237		
V29	266 (12)	264		239 (42)	352		
V 30	255 (5)	254		218 (25)	88		
V 31	231 (2)	304		206 (1)	225		
V 32	193 (5)	140		131 (5)	131		
V 33	74 (1)	117		29 (2)	65		

Table S9 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of conformers P1* and P2* of hydroperoxyethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method

	93*		
Mode		A 1 ·	Scaled
	Harmonic	Annarmonic	harmonic ^a
ν_1	3742 (41)	3558	3595 (41)
v_2	3144 (5)	3022	3021 (5)
v ₃	3122 (10)	2995	2999 (10)
v_4	3092 (4)	2971	2971 (4)
v ₅	3056 (6)	2958	2936 (6)
ν_6	3035 (50)	2888	2916 (50)
v_7	1783 (322)	1749	1749 (322)
ν_8	1493 (1)	1450	1465 (1)
V 9	1488 (8)	1433	1460 (8)
V 10	1416 (29)	1390	1390 (29)
v_{11}	1400 (2)	1369	1374 (2)
v_{12}	1383 (66)	1375	1358 (66)
V 13	1376 (11)	1335	1351 (11)
v_{14}	1349 (2)	1306	1325 (2)
v_{15}	1198 (264)	1166	1177 (264)
V 16	1160 (30)	1133	1140 (30)
v_{17}	1125 (166)	1093	1106 (166)
ν_{18}	1069 (79)	1042	1051 (79)
v ₁₉	1040 (0)	1019	1023 (0)
v_{20}	923 (28)	898	909 (28)
v_{21}	874 (95)	851	861 (95)
V22	852 (13)	838	840 (13)
V ₂₃	744 (8)	729	
v_{24}	633 (7)	626	
V25	502 (23)	500	
v_{26}	412 (16)	406	
V27	298 (8)	274	
V 28	266 (94)	419	
V29	250 (31)	67	
V 30	231 (3)	322	
V 31	201 (3)	102	
V 32	123 (6)	137	
V 33	32 (3)	32	

Table S10 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of conformer P3* of hydroperoxyethyl formate (HPEF) predicted with the B3LYP/aug-cc-pVTZ method

	Ç)1*		Q2*			
Mode	Harmonic	Anharmonic	Scaled harmonic ^a	Harmonic	Anharmonic	Scaled harmonic ^a	
ν_1	3779 (45)	3601	3630 (45)	3765 (40)	3587	3617 (40)	
v_2	3128 (12)	2999	3005 (12)	3123 (17)	2993	3000 (17)	
ν_3	3113 (8)	2962	2991 (8)	3111 (11)	2975	2989 (11)	
ν_4	3112 (15)	2989	2990 (15)	3079 (42)	2953	2958 (42)	
v_5	3061 (16)	2931	2941 (16)	3053 (22)	2924	2933 (22)	
ν_6	3045 (7)	2946	2926 (7)	3043 (7)	2942	2923 (7)	
ν_7	1489 (3)	1446	1462 (3)	1489 (4)	1443	1461 (4)	
ν_8	1486 (5)	1440	1458 (5)	1486 (8)	1446	1458 (8)	
v 9	1434 (49)	1395	1408 (49)	1442 (83)	1405	1416 (83)	
ν_{10}	1413 (50)	1387	1388 (50)	1412 (47)	1385	1387 (47)	
v_{11}	1385 (17)	1352	1360 (17)	1389 (17)	1358	1364 (17)	
v_{12}	1336 (20)	1299	1312 (20)	1349 (22)	1318	1324 (22)	
v_{13}	1302 (7)	1277	1278 (7)	1325 (12)	1292	1301 (12)	
v_{14}	1275 (15)	1234	1252 (15)	1303 (7)	1261	1280 (7)	
v_{15}	1150 (28)	1123	1130 (28)	1173 (245)	1136	1153 (245)	
ν_{16}	1117 (10)	1082	1098 (10)	1147 (34)	1121	1127 (34)	
v_{17}	1114 (572)	1077	1095 (572)	1116 (222)	1079	1098 (222)	
ν_{18}	1076 (41)	1049	1058 (41)	1088 (67)	1060	1070 (67)	
V 19	992 (40)	965	976 (40)	1002 (41)	977	986 (41)	
V20	943 (79)	912	928 (79)	963 (65)	930	948 (65)	
v_{21}	885 (9)	861	871 (9)	930 (4)	908	916 (4)	
v_{22}	872 (13)	852	859 (13)	892 (26)	869	879 (26)	
v_{23}	848 (5)	830	836 (5)	844 (3)	826	832 (3)	
v_{24}	800 (21)	784		748 (11)	737		
v_{25}	745 (1)	733		705 (11)	694		
v_{26}	564 (15)	556		560 (12)	552		
v_{27}	544 (21)	532		483 (14)	483		
v_{28}	468 (14)	460		463 (30)	449		
V29	349 (6)	390		379 (8)	379		
v ₃₀	290 (64)	258		311 (64)	306		
V 31	230 (0)	210		235 (0)	285		
V 32	196 (8)	149		209 (3)	133		
V ₃₃	95 (1)	97		78 (1)	78		

Table S11 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of conformers Q1* and Q2* of hydroxylated secondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ method

	C ₂ H	500H	
Mode	Harmonic	Anharmonic	Scaled
	Harmonic	Annamonic	harmonic ^a
ν_1	3755 (38)	3571	3607 (38)
v_2	3110 (28)	2971	2988 (28)
v ₃	3104 (21)	2989	2982 (21)
v_4	3044 (28)	2900	2925 (28)
v 5	3040 (15)	2907	2920 (15)
ν_6	3005 (42)	2857	2887 (42)
v_7	1528 (6)	1490	1499 (6)
V 8	1501 (4)	1457	1473 (4)
V 9	1483 (6)	1440	1456 (6)
V 10	1414 (5)	1390	1388 (5)
v ₁₁	1391 (0)	1370	1366 (0)
v_{12}	1360 (57)	1310	1336 (57)
V 13	1276 (1)	1243	1253 (1)
v_{14}	1183 (5)	1162	1163 (5)
v_{15}	1150 (23)	1121	1131 (23)
V 16	1035 (17)	1003	1019 (17)
v_{17}	951 (6)	927	936 (6)
v_{18}	868 (8)	853	855 (8)
v 19	829 (1)	823	817 (1)
v_{20}	474 (8)	468	
v_{21}	296 (0)	293	
v_{22}	232 (5)	217	
v ₂₃	188 (103)	100	
v_{24}	127 (6)	121	

Table S12 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of C₂H₅OOH predicted with the B3LYP/aug-cc-pVTZ method

	C_2H_3	OOH-1		C_2H_2	3OOH-2	
Mode	Hormonio	Anharmonia	Scaled	Harmonia	Anhormonio	Scaled
	Harmonic	Annarmonic	harmonic ^a	Harmonic	Annarmonic	harmonic ^a
ν_1	3736 (39)	3553	3589 (39)	3752 (56)	3572	3604 (56)
v_2	3253 (2)	3115	3125 (2)	3270 (1)	3131	3142 (1)
v_3	3189 (3)	3054	3063 (3)	3186 (1)	3048	3061 (1)
ν_4	3161 (1)	3064	3037 (1)	3171 (0)	2998	3047 (0)
v_5	1683 (90)	1641	1651 (90)	1697 (138)	1650	1664 (138)
ν_6	1423 (3)	1391	1396 (3)	1431 (19)	1423	1404 (19)
v_7	1370 (47)	1339	1345 (47)	1379 (36)	1321	1354 (36)
ν_8	1317 (2)	1293	1294 (2)	1324 (3)	1292	1301 (3)
V 9	1181 (67)	1153	1161 (67)	1151 (40)	1128	1132 (40)
v_{10}	993 (29)	981	977 (29)	971 (18)	917	956 (18)
v_{11}	970 (10)	935	954 (10)	969 (24)	972	954 (24)
V 12	884 (51)	870	870 (51)	892 (31)	867	879 (31)
v_{13}	872 (25)	843	859 (25)	865 (59)	846	852 (59)
v_{14}	711 (9)	689		709 (6)	695	
v_{15}	527 (8)	521		621 (5)	611	
v_{16}	347 (2)	343		320 (0)	315	
V17	237 (106)	146		243 (5)	229	
v_{18}	92 (17)	64		131 (122)	119	

Table S13 Harmonic, anharmonic, and scaled harmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹, listed parenthetically) of C₂H₃OOH-1 and C₂H₃OOH-2 predicted with the B3LYP/aug-cc-pVTZ method

Mode		HPE	F (P1)			HPE	EF (P2)	
	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	a-/b-/c-	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>
ν_1	1.011	0.997	1.000	66/34/0	1.001	1.000	1.000	5/57/38
v_7	1.000	0.999	0.999	61/37/1	1.001	0.998	0.999	55/0/44
ν_8	0.996	1.002	1.000	9/80/11	1.001	1.000	1.001	25/2/73
V 9	0.999	1.000	1.001	1/98/1	1.000	1.001	1.001	0/4/96
V 10	1.000	1.001	1.000	1/21/78	0.999	0.999	0.999	1/99/1
v_{11}	1.000	0.998	0.999	92/6/2	1.000	1.000	1.001	21/1/78
V 12	0.999	1.001	1.000	36/60/4	1.002	0.998	1.003	52/21/26
v ₁₃	0.999	1.000	0.999	81/17/2	0.999	0.999	1.000	21/76/3
v_{14}	0.999	1.000	0.999	41/16/42	1.002	0.996	0.993	28/72/1
V 15	0.999	0.998	0.998	98/0/2	0.997	0.999	0.999	71/29/0
v_{16}	1.002	1.000	0.999	70/17/13	1.001	0.999	0.999	86/12/2
V 17	0.996	0.999	0.999	34/62/5	0.996	0.999	0.999	100/0/0
V 18	0.999	0.998	0.998	79/5/16	0.997	0.999	0.998	38/39/23
V 19	1.000	0.999	1.000	5/23/72	1.000	1.000	0.999	43/39/18
V20	0.998	0.999	0.999	67/31/2	0.997	1.000	0.999	47/50/4
V21	0.998	1.000	0.999	24/73/3	0.999	0.999	0.998	100/0/0
V22	1.001	0.998	0.999	17/79/5	0.997	0.999	0.999	65/13/22
v = 0	A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}		A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}	
	0.1188	0.0845	0.0524		0.1344	0.0638	0.0496	

Table S14 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of conformers P1 and P2 of HPEF predicted with the B3LYP/aug-cc-pVTZ method

Modo		HPE	EF (P3)	
Mode	A'/A"	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>
ν_1	1.001	0.999	0.999	0/93/7
v_7	0.998	1.000	1.000	27/0/73
ν_8	1.002	0.999	1.000	17/32/51
V 9	1.001	1.000	1.000	13/0/86
v_{10}	1.002	0.999	1.001	8/1/92
v_{11}	0.997	1.000	1.000	1/83/16
v_{12}	1.001	1.000	1.001	39/2/59
v ₁₃	1.000	0.998	0.998	42/56/2
v_{14}	0.996	1.000	0.999	50/49/1
V15	1.001	1.000	0.999	44/27/29
v_{16}	0.999	0.999	0.999	54/42/3
V 17	0.999	0.997	0.999	91/8/1
v_{18}	0.995	1.000	0.999	36/64/0
V19	1.000	1.000	0.999	88/10/2
V 20	1.000	0.998	0.998	24/69/7
v_{21}	1.000	0.998	0.998	76/2/21
V 22	1.002	0.996	0.997	81/0/19
	A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}	
v = 0	0.1211	0.0722	0.0583	

Table S15 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of the conformer P3 of HPEF predicted with the B3LYP/aug-cc-pVTZ method

Mada		HSOZ	Z (Q1)		HSOZ (Q2)			
Mode	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	a-/b-/c-	A'/A"	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>
ν_1	1.001	0.999	0.999	4/8/88	1.000	1.000	1.000	10/2/88
v_7	1.001	1.001	1.000	0/1/99	1.000	1.000	1.001	35/62/3
ν_8	1.000	1.000	1.001	23/60/17	1.000	1.001	1.000	0/1/99
V 9	0.999	1.001	1.002	32/32/36	1.000	1.000	1.001	85/12/3
v_{10}	0.999	1.000	1.001	100/0/0	1.000	0.999	1.001	99/1/1
v_{11}	0.999	1.000	1.002	95/3/2	1.000	0.999	1.001	93/2/5
V 12	0.999	0.999	0.996	28/65/7	0.999	1.000	0.997	0/99/1
v_{13}	0.999	1.000	1.000	73/9/18	1.000	1.000	0.999	87/8/5
v_{14}	0.999	1.000	0.999	55/44/1	0.998	1.000	1.000	11/67/23
V 15	1.000	1.001	1.000	21/3/75	0.999	1.000	0.999	94/3/3
v_{16}	0.996	1.000	1.003	1/98/1	0.999	1.000	1.000	77/11/12
V 17	0.996	0.999	1.000	57/1/42	1.001	0.999	1.001	49/50/0
V 18	0.997	0.998	0.999	76/14/10	0.996	0.997	0.997	84/7/9
V 19	1.000	0.998	1.001	48/12/40	1.003	0.998	1.000	43/2/55
v_{20}	0.998	0.999	0.998	3/85/12	0.995	0.999	0.997	6/93/1
v_{21}	0.999	0.999	1.000	8/89/4	0.997	0.999	0.999	16/26/58
V22	0.999	1.000	1.000	3/7/90	1.000	1.000	0.998	0/99/0
V23	0.998	0.998	0.997	0/1/99	0.998	0.999	0.999	42/56/2
V 24	1.002	0.998	0.997	23/60/17	1.000	0.999	1.000	55/23/22
	$A^{"}/\mathrm{cm}^{-1}$	$B^{"}/\mathrm{cm}^{-1}$	C'' / cm^{-1}		$A^{"}$ / cm ⁻¹	$B^{"}/\mathrm{cm}^{-1}$	C'' / cm^{-1}	
v = 0	0.1747	0.0754	0.0636		0.2037	0.0706	0.0571	

Table S16 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of conformers Q1 and Q2 of HSOZ predicted with the B3LYP/aug-cc-pVTZ method

Mada		HPEF	(P1*)		HPEF (P2*)			
Mode	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	a-/b-/c-	A'/A"	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>
ν_1	1.001	1.004	0.998	96/1/3	1.004	0.997	0.998	1/73/26
v_7	0.999	1.000	1.000	7/78/14	1.002	0.996	0.998	58/2/40
ν_8	1.000	0.999	0.999	13/63/24	1.000	1.000	1.001	25/30/45
V 9	1.001	1.001	1.000	13/76/10	1.002	1.000	1.000	10/4/86
v_{10}	1.001	1.001	1.000	43/19/38	0.998	0.999	0.999	1/97/2
v_{11}	0.998	0.999	1.000	21/13/66	1.000	1.000	1.001	41/0/59
V12	1.001	0.999	1.000	9/82/10	1.003	0.998	1.000	52/36/12
V 13	1.000	1.001	1.002	39/55/7	0.998	1.002	1.001	44/5/52
v_{14}	0.998	0.997	0.997	41/32/28	0.996	0.999	0.997	28/53/18
V15	0.999	0.998	0.999	77/22/1	0.997	1.002	1.000	83/16/1
v_{16}	1.002	1.000	1.000	32/1/67	0.997	1.000	1.000	92/7/1
v_{17}	0.995	0.999	1.000	85/5/10	0.996	1.001	1.001	93/4/3
v_{18}	0.999	0.998	0.999	85/10/5	0.998	0.998	0.998	69/21/10
V 19	0.999	1.000	0.999	94/3/2	0.999	1.000	0.999	55/45/0
v_{20}	0.999	0.999	0.999	1/0/0	0.999	0.999	0.999	66/8/27
v_{21}	0.997	1.000	0.999	66/34/0	0.996	1.000	0.999	81/5/13
V22	0.999	0.999	1.000	70/3/27	0.996	1.002	1.000	14/10/76
	A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}		A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}	
v = 0	0.1167	0.0856	0.0643		0.1499	0.0598	0.0518	

Table S17 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of conformers P1* and P2* of HPEF predicted with the B3LYP/aug-cc-pVTZ method

Mode		HPEF	F (P3*)	
Mode	A'/A"	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>
ν_1	1.000	1.001	1.000	3/85/12
v_7	1.002	0.999	0.999	70/11/19
ν_8	1.000	1.000	1.000	85/8/7
V 9	1.000	1.000	1.000	11/14/76
v_{10}	0.999	1.000	0.999	0/84/15
v_{11}	1.000	1.001	1.000	40/12/48
v_{12}	1.000	0.999	1.000	57/18/24
v_{13}	1.009	0.999	1.001	18/12/70
v_{14}	0.994	1.000	0.997	75/17/8
V15	0.997	0.997	0.998	91/9/0
v_{16}	1.002	1.001	1.000	80/1/19
V 17	0.991	0.997	0.999	93/2/5
v_{18}	0.997	0.999	0.999	60/37/4
v ₁₉	0.999	1.000	1.000	49/47/4
V 20	0.998	1.000	0.999	56/25/19
v_{21}	0.997	0.997	0.998	88/2/10
V 22	0.996	0.999	0.999	1/70/30
	A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}	
v = 0	0.1754	0.0551	0.0491	

Table S18 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of the conformer P3* of HPEF predicted with the B3LYP/aug-cc-pVTZ method

Mada		HSOZ (Q1*)				HSOZ (Q2*)			
Mode	A'/A"	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>	
ν_1	1.000	1.000	1.000	7/4//89	0.999	1.000	1.003	0/48/52	
v_7	1.001	1.000	1.001	11/82/7	1.003	0.999	1.000	1/13/87	
v_8	1.000	1.001	1.000	12/1/88	1.000	1.001	1.000	47/18/36	
V 9	1.000	1.000	1.001	96/3/1	1.000	1.000	1.001	73/15/12	
v_{10}	0.999	0.999	1.000	85/1/14	0.998	0.999	1.000	69/14/17	
v_{11}	0.999	1.000	1.003	97/3/0	0.999	1.000	1.003	96/4/0	
V12	1.000	1.000	0.997	7/92/1	0.997	1.000	0.999	5/88/8	
V13	1.000	1.000	1.000	93/4/3	0.998	1.000	1.000	88/2/10	
v_{14}	0.999	1.000	0.997	99/0/1	0.997	1.000	0.999	72/6/22	
V15	1.003	1.002	0.999	30/1/69	0.995	1.001	1.001	72/17/11	
v_{16}	0.999	0.996	1.000	19/17/63	1.003	1.002	0.999	63/1/36	
V 17	0.999	0.998	1.000	98/0/2	0.997	0.997	1.004	97/1/1	
v_{18}	0.997	1.000	0.998	6/94/0	0.993	1.001	0.999	5/75/20	
V 19	1.002	0.998	1.000	3/6/91	0.999	1.000	1.001	45/3/52	
V 20	0.995	0.999	0.998	1/95/4	0.999	0.997	0.997	17/73/10	
v_{21}	0.999	1.000	0.999	31/63/6	0.999	1.000	1.001	2/35/63	
V 22	0.998	0.999	0.999	4/96/0	0.995	1.000	1.000	1/99/0	
V23	0.998	0.999	0.999	11/82/7	1.000	0.998	0.997	57/9/34	
v_{24}	1.000	0.999	1.000	12/1/88	1.003	0.998	0.998	14/49/38	
	$A^{"}$ / cm ⁻¹	B'' / cm^{-1}	C'' / cm^{-1}		$A^{"}$ / cm ⁻¹	B'' / cm^{-1}	C'' / cm^{-1}		
v = 0	0.1900	0.0748	0.0657		0.1635	0.0779	0.0665		

Table S19 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of conformers Q1* and Q2* of HSOZ predicted with the B3LYP/aug-cc-pVTZ method

Mada		C ₂ H ₅ OOH							
Mode	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>					
ν_1	0.998	1.000	1.000	51/8/41					
v_7	0.998	1.000	1.002	83/17/0					
ν_8	0.998	1.000	1.002	49/51/0					
V 9	1.004	1.002	1.000	0/0/100					
v_{10}	0.997	0.998	0.997	96/4/0					
v_{11}	0.998	0.999	0.998	20/79/1					
V12	1.000	0.999	0.998	93/7/0					
V 13	0.999	0.999	1.001	51/17/32					
V 14	1.020	0.999	0.998	9/0/90					
V15	0.976	0.998	1.000	18/82/0					
V 16	0.995	0.996	0.995	57/43/0					
v_{17}	0.998	0.996	0.997	98/0/2					
v_{18}	1.004	0.998	0.997	46/54/0					
V 19	0.997	0.999	0.999	17/0/82					
	A'' / cm^{-1}	$B^{"}/\mathrm{cm}^{-1}$	C'' / cm^{-1}						
v = 0	1.0292	0.1369	0.1279						

Table S20 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of C₂H₅OOH predicted with the B3LYP/aug-cc-pVTZ method

Mada		C_2H_3C	OOH-1		C ₂ H ₃ OOH-2			
Mode	A'/A"	<i>B'/B</i> "	<i>C</i> '/ <i>C</i> ''	a-/b-/c-	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>a-/b-/c-</i>
ν_1	0.993	1.000	1.002	37/9/55	0.997	0.999	1.001	60/2/39
V 5	0.998	0.997	0.998	97/0/3	0.996	0.999	0.998	81/19/0
v_6	1.002	1.001	1.000	82/17/1	1.001	1.000	1.000	58/41/0
v_7	0.989	0.999	1.001	78/15/7	0.997	1.000	0.999	28/72/0
ν_8	1.004	1.000	0.999	0/68/32	0.999	1.002	1.000	4/96/0
V 9	1.002	0.998	0.997	86/14/1	0.999	0.999	0.997	85/15/0
v_{10}	0.992	1.001	1.000	57/0/42	0.998	0.999	1.000	18/21/61
v_{11}	0.984	0.998	1.002	12/3/85	0.999	0.999	1.000	22/31/47
V ₁₂	1.013	0.997	0.995	6/4/90	0.999	0.997	0.995	90/10/0
v ₁₃	1.005	0.997	0.997	63/3/34	0.998	0.998	1.000	0/0/99
	A" / cm ⁻¹	B'' / cm^{-1}	C'' / cm^{-1}		A'' / cm^{-1}	B'' / cm^{-1}	C'' / cm^{-1}	
v = 0	1.3711	0.1522	0.1416		0.62730	0.21780	0.16320	

Table S21 Rotational parameters of the ground state and vibrationally excited states (v = 1) and ratios of *a*-, *b*-, and *c*-types of C₂H₃OOH-1 and C₂H₃OOH-2 predicted with the B3LYP/aug-cc-pVTZ method

Mada	Experiment	Literature ^a	Literature ^b	Mode	
Mode	$/cm^{-1}$	$/cm^{-1}$	$/cm^{-1}$	Description ^c	
V 5	1810 (35) ^d	1810 (23)	1808 (s)	<i>iph</i> . C=O/C=O stretch	
ν_6	1792 (94)	1792 (75)	1792 (vs)	oph. C=O/C=O stretch	
v_7			1442 (vw)	CH ₃ deformation	
ν_8			1431 (vw)	CH ₂ scissor	
V 9	1378 (14)	1378 (10)	1378 (m)	CH ₃ umbrella	
v_{10}			1378 (m)	CH <i>ip</i> -bend	
v_{11}	1199 (76)	1200 (67)	1200 (vs)	oph-CC/CO stretch	
v_{12}			1133 (m)	OC(O)C op-deformation	
v_{13}	1045 (100)	1045 (100)	1049 (vs)	(O)CO stretch	
v_{14}			998 (w)	CH op-bend	
V 15			980 (m)	CH ₃ wag	
v_{16}	933 (17)	930 (18)	930 (m)	<i>iph</i> -CC/CO stretch	

Table S22 Comparison of experimentally observed vibrational wavenumbers and relative IR intensities of FAA (F1) with literature values

^aB. Behera, K. Takahashi and Y.-P. Lee, *Phys. Chem. Chem. Phys.*, 2022, **24**, 18568. ^bG. Wu, S. Shlykov, C. V. Alsenoy, H. J. Geise, E. Sluyts and B. J. van der Veken, *J. Phys. Chem.*, 1996, **100**, 11620. ^{*c*} Approximate mode description: *ip*: in-plane; *op*: out-of-plane; *iph*: in-phase; *oph*: out-of-phase. ^{*d*} Percentage integrated IR intensities relative to the most intense band (v_{13}) at 1045 cm⁻¹ are listed in parentheses.

		[CH ₃	[HC(O) [O]]	[0]]	[CH ₃	$A_6{}^b$		$A_7{}^b$	
Set	Expt.	$CHI_2]_0$	$OH]_0$	$[\mathbf{O}_2]_0$	CHI] ₀	k_1^{I}	$k_1^{\mathrm{I}'}$	k_1^{I}	$k_1^{\mathrm{I'}}$
		$/10^{14} a$	$/10^{15 a}$	$/10^{18 a}$	$/10^{14} a$	$/10^5 \ s^{-1}$	$/10^5 \ s^{-1}$	$/10^5 \ s^{-1}$	$/10^5 \ s^{-1}$
1	1	12.6	0.35	1.3	3.3	1.56 (0.19)	1.23 (0.09)	1.12 (0.19)	0.80 (0.09)
	2	12.6	1.21	1.3	3.1	2.95 (0.16)	2.59 (0.13)	2.46 (0.16)	2.13 (0.25)
	3	12.6	1.47	1.3	3.6	3.60 (0.26)	3.18 (0.18)	3.12 (0.26)	2.75 (0.24)
	4	12.6	1.91	1.3	2.9	4.33 (0.36)	3.98 (0.21)	4.36 (0.36)	4.03 (0.36)
	5	12.6	2.69	1.3	2.9	6.12 (0.40)	5.83 (0.30)	5.92 (0.40)	5.64 (0.52)
	6	12.6	2.93	1.3	2.8	6.72 (0.42)	6.45 (0.28)	6.77 (0.42)	6.51 (0.56)
2	7	19.4	0.95	1.3	5.9	2.20 (0.10)	1.67 (0.05)	1.87 (0.10)	1.38 (0.11)
	8	19.4	1.04	1.3	5.2	2.32 (0.09)	1.87 (0.11)	2.06 (0.09)	1.61 (0.18)
	9	19.4	1.75	1.3	5.5	3.58 (0.13)	3.22 (0.13)	3.60 (0.13)	3.07 (0.22)
	10	19.4	2.27	1.3	6.2	4.75 (0.23)	4.19 (0.15)	4.45 (0.23)	3.86 (0.27)
	11	19.4	2.95	1.3	4.9	6.25 (0.36)	5.81 (0.23)	5.90 (0.36)	5.49 (0.42)
	12	19.4	3.73	1.3	5.0	8.05 (0.52)	7.75 (0.28)	8.84 (0.52)	7.66 (0.44)
3	13	16.2	0.43	1.3	5.1	1.80 (0.14)	1.34 (0.09)	1.51 (0.14)	1.14 (0.10)
	14	16.2	0.95	1.3	4.5	2.28 (0.09)	1.86 (0.10)	1.82 (0.09)	1.40 (0.10)
	15	16.2	1.71	1.3	4.8	3.84 (0.17)	3.36 (0.13)	3.50 (0.17)	3.04 (0.13)
	16	16.2	2.27	1.3	4.6	5.23 (0.39)	4.79 (0.20)	4.80 (0.39)	4.44 (0.20)
	17	16.2	2.86	1.3	4.6	6.45 (0.54)	6.02 (0.21)	6.28 (0.54)	5.85 (0.28)
	18	16.2	3.72	1.3	4.6	8.21 (0.83)	7.90 (0.32)	9.10 (0.83)	9.29 (0.50)
4	19	15.6	0.47	2.6	1.8	0.78 (0.18)	1.09 (0.12)	1.22 (0.18)	1.00 (0.15)
	20	15.6	0.80	2.6	1.5	1.93 (0.24)	1.69 (0.21)	1.71 (0.24)	1.53 (0.16)
	21	15.6	1.71	2.6	1.6	4.18 (0.08)	3.82 (0.30)	5.17 (0.64)	4.79 (0.48)
	22	15.6	2.30	2.6	1.2	5.39 (0.17)	5.02 (0.45)	4.95 (0.17)	4.63 (0.47)
	23	15.6	2.83	2.6	2.4	6.16 (0.19)	5.66 (0.44)	6.67 (0.19)	6.21 (0.49)
	24	15.6	3.44	2.6	2.7	8.97 (0.54)	8.32 (0.75)	7.75 (0.54)	7.23 (0.50)

Table S23 Experimental conditions and first-order rate coefficients k^{I} and $k^{I'}$ of the reaction CH₃CHOO + HC(O)OH in four sets of experiments

^{*a*} in unit of molecule cm⁻³. ^{*b*} Bands A₆ and A₇ are integrated over 1150–1175 cm⁻¹ and 1180–1210 cm⁻¹, respectively. k_1^{I} and $k_1^{I'}$ are rate coefficients obtained from exponential fit and model fit, respectively. The standard deviations in fitting are listed in parentheses. Outlier data points excluded in the fitting (Fig. 12) are listed in italic.

	Deservise	Rate co	Deferrere	
	Reaction	40 Torr	80 Torr	Reference
1	$CH_{3}CHI + O_{2} \rightarrow CH_{3}CHOO + I$	6.1×10^{-12}	5.5×10^{-12}	b
2	$CH_3CHI + O_2 \rightarrow CH_3CHIOO$	0.7×10^{-12}	1.3×10^{-12}	b
3	$CH_3CHI + O_2 \rightarrow other$	1.8×10^{-12}	1.8×10^{-12}	b
4	$2 \text{ CH}_3\text{CHOO} \rightarrow 2 \text{ CH}_3\text{CHO} + \text{O}_2$	1.6	$\times 10^{-10}$	С
5	$CH_3CHIOO + CH_3CHOO \rightarrow other$ 1.0×10^{-10}		d	
6	$CH_{3}CHOO + HC(O)OH \rightarrow HPEF$	$k^{\mathrm{I}} = k_3 \times [\mathrm{HC}]$		
7	$HPEF \rightarrow FAA$	1420 s ⁻¹		This work

Table S24 The kinetic model employed in fitting the temporal profiles of bands A_6 and A_7 in the reaction $CH_3CHOO + HC(O)OH$

^{*a*} Rate coefficient in cm³ molecule⁻¹ s⁻¹, unless otherwise specified. ^{*b*} The total rate coefficient 8.6×10^{-12} cm³ molecule⁻¹ s⁻¹ was taken from Howes et al., *Phys. Chem. Chem. Phys.*, 2018, **20**, 22218; a value of 8.0×10^{-12} cm³ molecule⁻¹ s⁻¹ was reported by Sheps et al., *Phys. Chem. Chem. Phys.*, 2014, **16**, 26701. The branching of CH₃CHI + O₂ was based on our unpublished work. ^{*c*} From Luo et al. *J. Phys. Chem. Lett.*, 2018, **9**, 4391. ^{*d*} Rate coefficient unknow; a rate of 1.0×10^{-10} cm³ molecule⁻¹ s⁻¹ similar to CH₂IOO + CH₂OO was assumed.

Fig. S1 Geometries of species observed in this work. (a) *anti*-CH₃CHOO, (b) *syn*-CH₃CHOO, (c) *trans*-HC(O)OH, (d) formic acetic anhydride (FAA, F1), (c) hydroperoxyethyl formate (HPEF, P1), (d) HPEF (P2), (e) HPEF (P2*), and (e) HPEF (P3*). The structures were computed with the B3LYP/aug-cc-pVTZ method. Relative energies (in kJ mol⁻¹) among conformers are listed in parentheses; energies were calculated with the CCSD(T) method at the geometries optimized with the B3LYP/aug-cc-pVTZ method and corrected for vibrational zero-point energy.

Fig. S2 Geometries of possible conformers of hydroperoxyethyl formate (HPEF) in the reaction of CH₃CHOO + HC(O)OH. Conformers of HPEF: (a) P1, (b) P2, (c) P3, (d) P1*, (e) P2*, (f) P3*. The structures were calculated with the B3LYP/aug-cc-pVTZ method and the energies were calculated with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-PVTZ method with zero-point vibrational energy at the B3LYP level corrected. Relative energy with respect to the least-energy conformer P1 is presented in parentheses. Bond distances (blue) are in Å and bond angles (in black) are in degree.

Fig. S3 Potential-energy curve calculated as a function of the COCO dihedral angle for the interconversion among conformers of HPEF (P1–P3) produced from *anti*-CH₃CHOO + HC(O)OH. The energies are calculated with the B3LYP/aug-cc-pVTZ methods. The zero energy is set as that of the most stable conformer P1.

Fig. S4 Potential-energy curve calculated as a function of the COCO dihedral angle for the interconversion among conformers of HPEF (P1*-P3*) produced from *syn*-CH₃CHOO + HC(O)OH. The energies are calculated with the B3LYP/aug-cc-pVTZ methods. The zero energy is set as that of the most stable conformer P2*.

Fig. S5 Potential-energy curves calculated for the interconversion HPEF conformers between P2*/P3* and P2. (a) P2* to P2, and (b) P3* to P2. We connected two scans to present the interconversion in the same figure. The scan for OOCO, and HOOC dihedral angles is presented in blue, and black color, respectively. The energies are calculated with the B3LYP/aug-cc-pVTZ methods. The least energy conformer P2 energy is set as zero.

Fig. S6 Geometries of possible conformers of hydroxylated secondary ozonide (HSOZ) produced in the reaction of CH₃CHOO + HC(O)OH. Conformers of HSOZ: (a) Q1, (b) Q2, (c) Q1*, and (d) Q2*. The structures were calculated with the B3LYP/aug-cc-pVTZ method and the energies were calculated with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-PVTZ method with zero-point vibrational energy at the B3LYP level corrected. Relative energy with respect to the least-energy conformer Q1 is presented in parentheses. Bond distances (blue) are in Å and bond angles (in black) are in degree.

(c) C2*

(d) C4*

(e) C₂H₅OOH

(f) C₂H₃OOH-1 (g) C₂H₃OOH-2

Fig. S7 Geometries of pre-reactive complexes and products other than dehydrated products in the reaction of CH₃CHOO + HC(O)OH. Complexes and products: (a) C2, (b) C3, (c) C2*, (d) C4*, (e) C₂H₅OH, (f) C₂H₃OOH-1, and (d) C₂H₃OOH-2. The structures were calculated with the B3LYP/aug-cc-pVTZ method. Bond distances (blue) are in Å and bond angles (in black) are in degrees.

Fig. S8 Geometries of conformers of formic acetic anhydride (FAA) and formic anhydride (FAN) produced in the reaction of CH₃CHOO + HC(O)OH. Conformers of FAA: (a) F1, (b) F2, (c) F3, and (d) F4. Conformers of FAN: (e) *anti*-FAN, and (f) *syn*-FAN. The structures were calculated with the B3LYP/aug-cc-pVTZ method and the energies were calculated with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-PVTZ method with zero-point vibrational energy at the B3LYP level corrected. Relative energy with respect to the least-energy conformer is presented in parentheses. Bond distances (blue) are in Å and bond angles (in black) are in degree.

Fig. S9 Geometries of transition states in the reaction of $anti-CH_3CHOO + HC(O)OH$. The structures were calculated with the B3LYP/aug-cc-pVTZ method. Bond distances (blue) are in Å and bond angles (in black) are in degree.

Fig. S10 Geometries of transition states in the reaction of syn-CH₃CHOO + HC(O)OH. The structures were calculated with the B3LYP/aug-cc-pVTZ method. Bond distances (blue) are in Å and bond angles (in black) are in degree.

Fig. S11 Linear fit of experimental wavenumbers vs. calculated harmonic vibrational wavenumbers of hydroperoxylmethyl formate (HPMF). Data taken from C.-A. Chung, J. W. Su and Y.-P. Lee, *Phys. Chem. Chem. Phys.*, 2019, **21**, 21445. The linear equation obtained on fitting the data is $y = (0.9761 \pm 0.0177) x + (7.9 \pm 22.2)$; y is the scaled wavenumber and x is the calculated harmonic vibrational wavenumber.

Fig. S12 Observed spectra in region 770–1950 cm⁻¹ during photolysis at 308 nm (5 Hz, 180 mJ pulse⁻¹) of a flowing mixture of CH₃CHI₂/O₂/HC(O)OH (0.064/53.9/0.020, $P_T = 54.0$ torr) recorded with continuous scan. (a) Spectrum before photolysis. Features of CH₃CHI₂ and HC(O)OH are denoted with green circles and red asterisks, respectively. (b) Spectrum during photolysis. New features are indicated by pink arrows. Reference spectra of formic acetic anhydride FAA (c), CH₃CHO (d), C₂H₄ (e), and CH₂CHI (f). (g) Processed spectra in (b), with feature of HC(O)OH, CH₃CHI₂, FAA, CH₃CHO, C₂H₄, and CH₂CHI removed. Features in group A are indicated. The instrumental resolution is 1 cm⁻¹.

Fig. S13 Comparison of temporal evolution of bands A_6 and A_7 . The traces of bands A_6 (red), and A_7 (black) were obtained on integrating over the regions 1160–1165 and 1185–1190 cm⁻¹, respectively. The left ordinate and right ordinate are for bands A_6 and A_7 , respectively.

Fig. S14 Comparison of observed spectra in groups C, D, and E with simulated IR spectra of conformers of HPEF. (a) Processed spectrum of group C, reproduced from Fig. 8e. Simulated IR spectra of HPEF (P2*) (b) and HPEF (P3*) (c). (d) Processed spectrum of group D, reproduced from Fig. 8f. Simulated IR spectra of HPEF (P2) (e) and HPEF (P3) (f). (g) Processed spectrum of group E, reproduced from Fig. 8g. Simulated IR spectra of HPEF (P1) (h) and HPEF (P1*) (i). Spectra were simulated according to scaled vibrational wavenumbers, harmonic IR intensities, rotational parameters, and type ratios predicted with the B3LYP/aug-cc-pVTZ method. The regions of interference from absorption of CH₃CHI₂ and HC(O)OH are shaded gray. The instrumental resolution is 2 cm^{-1} .

Fig. S15 Comparison of the observed spectra in groups C, D, and E with simulated IR spectra of conformers of HSOZ (Q1, Q2, Q1*, and Q2*), C₂H₅OOH, C₂H₃OOH-1, and C₂H₃OOH-2. (a) Processed spectrum of group C, reproduced from Fig. 8e. (b) Processed spectrum of group D, reproduced from Fig. 8f. (c) Processed spectrum of group E, reproduced from Fig. 8g. (d)–(j) Simulated IR spectra of HSOZ (Q1), HSOZ (Q2), HSOZ (Q1*), HSOZ (Q2*), C₂H₅OOH, C₂H₃OOH-1, and C₂H₃OOH-2 according to anharmonic vibrational wavenumbers and harmonic IR intensities predicted with the B3LYP/aug-cc-pVTZ method. The regions of interference from absorption of CH₃CHI₂ and HC(O)OH are shaded gray. The instrumental resolution is 2 cm⁻¹.

Fig. S16 Comparison of bands A12 and A13 observed in region 3200–3900 cm⁻¹ with simulated IR spectra of possible conformers of HPEF (P1–P3, P1*–P3*), HSOZ (Q1–Q2, Q1*–Q2*), C₂H₅OOH, C₂H₃OOH-1, and C₂H₃OOH-2. (a) Flow cell experiment spectra reproduced from Fig. 6c. Simulated IR spectra of (b) HPEF (P2), (c) HPEF (P1), (d) HPEF (P2*), (e) HPEF (P3*), (f) HPEF (P1*), (g) HPEF (P3), (h) HSOZ (Q1), (i) HSOZ (Q2), (j) HSOZ (Q1*), (k) HSOZ (Q2*), (l) C₂H₅OOH, (m) C₂H₃OOH-1, and (n) C₂H₃OOH-2 according to scaled harmonic vibrational wavenumbers and harmonic IR intensities predicted with the B3LYP/aug-cc-pVTZ method. The instrumental resolution is 2 cm⁻¹.

Fig. S17 Exponential fit of the decay of P2*/P3*. The temporal profile was obtained on subtracting 1.73 times the integrated absorbance of band A₇ (integrated over 1180–1210 cm⁻¹) from that of band A₆ (integrated over 1150–1175 cm⁻¹). The red line represents a single exponential fit with a decay rate coefficient (4430 ± 390) s⁻¹.

Fig. S18 Fitted first-order rate coefficients k_1^{I} (A₆) and k_1^{I} (A₇) as a function of [HC(O)OH]₀. (a) k_1^{I} (A₆) and (b) k_1^{I} (A₇) derived from the single exponential-rise fitting for the reaction CH₃CHOO + HC(O)OH \rightarrow HPEF. Bands A₆ and A₇ were integrated over regions 1150–1175 cm⁻¹ and 1180–1210 cm⁻¹, respectively. The orange line represents a linear fit to y = ax + b and the slope represents bimolecular rate coefficient k_1 ; $k_1'(A_6) = (2.2 \pm 0.3) \times 10^{-10}$ and $k_1(A_7) = (2.3 \pm 0.3) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹. The blue line represents a linear fit to y = ax; $k_1(A_6) = (2.2 \pm 0.2) \times 10^{-10}$ and $k_1(A_7) = (2.2 \pm 0.2) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹.

Fig. S19 Temporal profiles for the decay of CH₂CHI due to pumping. The solid red lines represent fitted temporal profiles. The data was obtained on integrating over the region $1585-1610 \text{ cm}^{-1}$ at temporal resolution 20 µs. (a) Integrated absorbance A of CH₂CHI and the single exponential fitting, (b) semi-logarithmic plot of integrated absorbance A of CH₂CHI vs. time and the linear fitting.

References

- ¹ N. U. M. Howes, Z. S. Mir, M. A. Blitz, S. Hardman, T. R. Lewis, D. Stone and P. W. Seakins, *Phys. Chem. Chem. Phys.*, 2018, **20**, 22218
- ² L. Sheps, A. M. Scully and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701
- ³ W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee and J. J.-M. Lin, *J. Chem. Phys.*, 2014, **141**, 104308.
- ⁴ T. Gravestock, M. Blitz, W. Bloss and D. E. Heard, ChemPhysChem, 2010, **11**, 3928.