Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Elucidating TH301's Influence on the Torsion Angle of CRY1 W399 Using Replica Exchange with Solute Tempering (REST) Molecular Dynamics (MD) Simulations

Yeongrae Cho,^{‡a,c}, Kexin Li,^{‡a, c}, Jin Hyup Lee^{b,c}, Seung Pil Pack^{a,c} and Art E. Cho^{*a,c}

- a. Department of Bioinformatics, Korea University, 2511 Sejong-ro, Sejong, 30119, Korea
- b. Department of Food and Biotechnology, 2511 Sejong-ro, Sejong, 30119, Korea
- c. Biological Clock-based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea

*Correspondence: <u>artcho@korea.ac.kr</u>

‡These authors contributed equally to this work

S-Fig 1. MD simulations of the CRY1-TH301 complex spanned temperatures from 300K to 500K, incrementing at 50K intervals, over a duration of 100ns. We evaluated the torsion angle $\chi 2$ of W399 (a-e) and the RMSD of the ligand (f-j). Specifically, (a & f) correspond to 300K, (b & g) to 350K, (c & h) to 400K, (d & i) to 450K, and (e & j) to 500K.

S-Fig 2. 2D diagram representations of the docking simulation results for each ligand at the binding site of the target protein CRY, with residues within 5Å displayed. (a) Interaction between KL101 and CRY1, (b) Interaction between KL201 and CRY1 and (c) Interaction between TH301 and CRY1.

S-Fig 3. Comparison and alignment of the binding pose between the crystal structure (PDB: 6KX7) and simulation results. Representations include the crystal structure (white), the initial structure from the MD simulation and docking result (green), and the average structure derived from the MD simulation (magenta).

S-Fig 4. The torsion angle of CRY1's W292 during the MD simulation is illustrated. This is achieved by extracting 10 snapshots at intervals of every 100 ns (a-d). The KDE plot shows the distribution of CRY1's W292 χ 1(e-h) torsion angle across all simulation frames, with dashed lines denoting angles discerned in the CRY1 crystal structure. Linear graphs (i-l) present the progression of the torsion angle of W292 over time. The colors represent different structures: Apo (Blue), TH301 (Yellow), KL101 (Green), and KL201 (Red).

S-Fig 5. The torsion angle of CRY1's H355 during the MD simulation is illustrated. This is achieved by extracting 10 snapshots at intervals of every 100 ns (a-d). The KDE plot shows the distribution of CRY1's H355 χ 1(e-h) torsion angle across all simulation frames, with dashed lines denoting angles discerned in the CRY1 crystal structure. Linear graphs (i-l) present the progression of the torsion angle of H355 over time. The colors represent different structures: Apo (Blue), TH301 (Yellow), KL101 (Green), and KL201 (Red).

S-Fig 6. The torsion angle of CRY1's H359 during the MD simulation is illustrated. This is achieved by extracting 10 snapshots at intervals of every 100 ns (a-d). The KDE plot shows the distribution of CRY1's H359 χ 1 (e-h) torsion angle across all simulation frames, with dashed lines denoting angles discerned in the CRY1 crystal structure. Linear graphs (i-l) present the progression of the torsion angle of H359 over time. The colors represent different structures: Apo (Blue), TH301 (Yellow), KL101 (Green), and KL201 (Red).

S-Fig 7. The torsion angle of CRY1's W399 during the MD simulation is illustrated. This is achieved by extracting 10 snapshots at intervals of every 100 ns (a-d). The KDE plot shows the distribution of CRY1's W399 χ 1 (e-h) and χ 2 (i-l) torsion angle across all simulation frames, with dashed lines denoting angles discerned in the CRY1 crystal structure. Linear graphs (n-t) present the progression of the torsion angle of W399 over time. The colors represent different structures: Apo (Blue), TH301 (Yellow), KL101 (Green), and KL201 (Red).

S-Fig 8. The torsion angle of CRY1's L400 during the MD simulation is illustrated. This is achieved by extracting 10 snapshots at intervals of every 100 ns (a-d). The KDE plot shows the distribution of CRY1's L400 χ 1 (e-h) torsion angle across all simulation frames, with dashed lines denoting angles discerned in the CRY1 crystal structure. Linear graphs (i-l) present the progression of the torsion angle of L400 over time. The colors represent different structures: Apo (Blue), TH301 (Yellow), KL101 (Green), and KL201 (Red).

S-Fig 9. Extracted initial snapshots of the MD simulation of the complex between TH301 compound and mCRY1. It represents the bound forms at 0ns (a), 5ns (b), and 12ns (c) of the MD simulation.

S-Fig 10. The MD simulation results were initialized with a manually modeled structure of W399 in the in-form conformation within the CRY1-TH301 complex. Within the MD simulation, the χ 2 torsion angle of W399 is depicted by the KED plot, with the torsion angle sequentially illustrated within the graph according to the simulation time.

S-Fig 11. In standard MD simulations, the initial position of the $\chi 2$ torsion angle of W399 in the CRY-TH301 complex was set to either in-from or out-from configurations. Over a 1000 ns simulation period, the distances and angles between TH301's chlorobenzene structure and W399's two ring structures were assessed (a). (b) The distance between TH301's chlorobenzene and W399's pyrrole structure in the in-from setting, and (c) in the out-from setting, and (e) in the out-from setting. (f) The angle between TH301's chlorobenzene and W399's chlorobenzene and W399's benzene and W399's side chain in the in-from setting, and (g) in the out-from setting.

S-Fig 12. During the REST simulation, the χ^2 torsion angle of CRY complex's W399 is depicted over time for each ligand (a-c). (a) Movement of CRY1's W399 χ^2 torsion angle when bound with KL101. (b) Movement of CRY1's W399 χ^2 torsion angle when bound with KL201. (c) Movement of CRY1's W399 χ^2 torsion angle when bound with TH301. The colors represent different structures: KL101 (Green), KL201 (Red), and TH301 (Yellow).

S-Fig 13. Observing ligand movement in CRY1 during REST Simulations. (a) Snapshots of the CRY1 and TH301 binding pose were extracted at 1 ns intervals over a 30 ns period during the REST simulation. (b) The RMSD of the ligand's movement in the Protein-Ligand Complex during the REST simulation, with the initial structure serving as the reference. (c) The RMSD of the ligand's movement in the Protein-Ligand Complex during the REST simulation, with the reference frame set to the average structure observed during the 15-30 ns period, where W399's movement was observed.

S-Table 1.	Interaction	energies	between	CRY	and	TH301	computed	using	MM-GBSA	during	MD
simulations, and the corresponding entropy and ΔG Bind values derived from these energies.											

	ΔG Bind	Coulomb	Covalent	Hbond	Lipo	Packing	SolvGB MM-GBSA*	-T∆S	∆G Bind
	MM-GBSA*	MM-GBSA*	MM-GBSA*	MM-GBSA*	MM-GBSA*	MM-GBSA*			
TH301 (in-form)	-84.34	-20.62	1.78	-0.94	-29.43	-3.10	33.23	8.56	-10.53
TH301 (out-form)	-83.06	-17.88	2.11	-0.75	-30.83	-4.46	30.90	8.63	-10.46

* The MM-GBSA label in each column indicates it was calculated using the Schrodinger's MM-GBSA module.

		KL10	1			KL20	1		TH301			
Replica Pairs	Total Exchanges	No. Accepts	No. Rejects	Accept Ratio	Total Exchanges	No. Accepts	No. Rejects	Accept Ratio	Total Exchanges	No. Accepts	No. Rejects	Accept Ratio
T01 - T02	15864	4530	11334	0.286	15864	4501	11363	0.284	15864	4699	11165	0.296
T02 - T03	9011	2659	6352	0.295	9011	2667	6344	0.296	9011	2711	6300	0.301
T03 – T04	11326	3407	7919	0.301	11326	3411	7915	0.301	11326	3329	7997	0.294
T04 – T05	10473	3266	7207	0.312	10473	3317	7156	0.317	10473	3191	7282	0.305
T05 – T06	10845	3378	7467	0.311	10845	3326	7519	0.307	10845	3396	7449	0.313
T06 – T07	10828	3382	7446	0.312	10828	3351	7477	0.309	10828	3414	7414	0.315
T07 – T08	10679	3440	7239	0.322	10679	3408	7271	0.319	10679	3418	7261	0.320
T08 – T09	10775	3433	7342	0.319	10775	3320	7455	0.308	10775	3451	7324	0.320
T09 - T10	10796	3542	7254	0.328	10796	3443	7353	0.319	10796	3358	7438	0.311
T10 – T11	10730	3513	7217	0.327	10730	3614	7116	0.337	10730	3418	7312	0.319
T11 – T12	10746	3568	7178	0.332	10746	3551	7195	0.330	10746	3454	7292	0.321
T12 - T13	10836	3675	7161	0.339	10836	3632	7204	0.335	10836	3489	7347	0.322
T13 – T14	10714	3628	7086	0.339	10714	3618	7096	0.338	10714	3580	7134	0.334
T14 - T15	10696	3623	7073	0.339	10696	3660	7036	0.342	10696	3487	7209	0.326
T15 – T16	10821	3772	7049	0.349	10821	3821	7000	0.353	10821	3816	7005	0.353
T16 – T17	10658	3658	7000	0.343	10658	3697	6961	0.347	10658	3753	6905	0.352
T17 – T18	10780	3720	7060	0.345	10780	3872	6908	0.359	10780	3743	7037	0.347
T18 – T19	10754	3829	6925	0.356	10754	3863	6891	0.359	10754	3752	7002	0.349
T19 – T20	10848	3944	6904	0.364	10848	3828	7020	0.353	10848	3753	7095	0.346
T20 - T21	10588	3868	6720	0.365	10588	3755	6833	0.355	10588	3655	6933	0.345
T21 – T22	11136	3931	7205	0.353	11136	3816	7320	0.343	11136	3956	7180	0.355
T22 – T23	9199	3255	5944	0.354	9199	3252	5947	0.354	9199	3130	6069	0.340
T23 – T24	15676	5706	9970	0.364	15676	5719	9957	0.365	15676	5725	9951	0.365

S-Table 2. Exchange statistics during REST simulations of KL101, KL201, and TH301 with the mCRY1 complex. Each row represents a pair of temperature replicas, showing the number of total exchange attempts, accepted exchanges, rejected exchanges, and the resulting acceptance ratio.