Computational NMR Investigation of MixedMetal (AI,Sc)-MIL-53 and its Phase Transitions

Zachary H. Davis, Emma A. L. Borthwick, Russell E. Morris and
Sharon E. Ashbrook

School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, St Andrews, KY16 9ST, United Kingdom

Supporting Information

S1. Structure generation
S2. Calculation of the reference shielding
S3. Comparison of results from different versions of CASTEP
S4. Calculated unit cell volumes
S5. Calculation of degeneracy-weighted $\mathrm{E}_{\text {mix }}$
S6. Additional calculated NMR parameters
S7. Calculation of δ_{1} and δ_{2} for a $\mathrm{I}=5 / 2$ 3QMAS NMR spectrum
S8. References

S1. Structure generation

Structural models for $\left(\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53 in the OP, NP, HT and LT forms were generated from crystal structure data reported in literature. ${ }^{\text {S1,S2 }}$ Hydrogen atoms were added to the OP, HT and LT structures to produce aryl and hydroxyl groups where appropriate. The NP model was based on the theoretical structure produced in work of Bignami et al., S3 where an experimentally derived hydrated structure of AI-MIL-53 was optimised before removal of water modules and subsequent re-optimisation. Supercells ($1 \times 1 \times 2$) were generated for the OP and HT forms, such that eight metal sites were present in the unit cell, matching the number present in the NP and LT forms. For NP, HT and LT structures, the unit cells were translated to enable direct comparison with the OP structures using the transformation matrices $\mathrm{T}_{\mathrm{NP}}, \mathrm{T}_{\mathrm{HT}}$ and T_{LT} where

$$
\begin{align*}
& \mathrm{T}_{\mathrm{NP}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \tag{S1.1}\\
& \mathrm{T}_{\mathrm{HT}}=\left(\begin{array}{lll}
0 & 0 & \overline{1} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \tag{S1.2}\\
& \mathrm{T}_{\mathrm{LT}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) . \tag{S1.3}
\end{align*}
$$

These transformations ensured that the definition of unit cell axes were comparable between the four model systems. Figure S 1.1 shows the resulting unit cell structures and numbering scheme used for the eight metal sites. Numbering of the cation sites is consistent between all four of the unit cells (but note that this does not indicate crystallographic inequivalence in the end member).

Figure S1.1 Schematic showing unit cell structures used for generating models for DFT calculations of (a) OP, (b) NP, (c) HT and (d) LT MIL-53 structures, with metal site numbering used to generate mixedmetal composition and substitution patterns.

As described in the main text, the SOD program ${ }^{54}$ was used to generate all possible symmetry inequivalent cation arrangements for each pore form based on their space groups: OP (Imma), NP ($P 2_{1} / c$), HT (C2/c) and LT ($P 2_{1} / c$). These space groups result in one, three, one and two crystallographically unique cation sites within the OP, NP, HT and LT unit cells, respectively, and 34, 88, 76 and 32 unique cation arrangements for the set of compositions explored (including the AI- and Sc-MIL-53 end members). Table S1.1 gives the complete set of ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 structural models studied computationally, and information on the cation arrangement, composition, and configurational degeneracies. With the exception of the end members, the substitution pattern for a given structure is contained within the structure name. The prefix denotes
which type of cation is located at the given numbered positions. For example, Sc-18 contains Sc^{3+} on sites 1 and 8 , and the remaining sites contain Al^{3+}, etc. Table S1.1 also describes the "type" or ordering, i.e., whether the cations are best described as being situated in layers (L) or chains (C), are found in structures that are end members or have very low levels of substitution (E) or are found in structures that have overall less ordering (O).

Table S1.1 Compositions, substitution patterns and configurational degeneracies of the structural models of OP, NP, HT and LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 (generated by $\mathrm{SOD}^{\mathrm{S4}}$) studied by DFT.

Structure name	Configurational degeneracy						
NP	LT	HT	OP	x	Type $^{\mathbf{a}}$	Parent OP/HT structure $^{\mathbf{b}}$	
Al-MIL-53	1	1	1	1	1	E	-
Al-1	4	4	8	8	0.125	E	-
Al-3	2	4	-	-	0.125	E	Al-1
Al-8	2	-	-	-	0.125	E	Al-1
Al-12	2	2	4	4	0.25	L	-
Al-13	4	4	8	8	0.25	L	-
Al-15	2	2	-	-	0.25	C	Al-48
Al-16	2	2	4	4	0.25	O	-
Al-17	4	4	8	8	0.25	O	-
Al-18	4	4	-	-	0.25	O	Al-17
Al-38	1	-	-	-	0.25	O	Al-16
Al-47	1	2	-	-	0.25	O	Al-16
Al-48	2	2	4	4	0.25	C	-
Al-58	4	4	-	-	0.25	L	Al-13
Al-78	2	2	-	-	0.25	L	Al-12
Al-123	2	4	8	8	0.375	L	-
Al-124	2	-	-	-	0.375	L	Al-123
Al-125	4	4	8	8	0.375	C	-
Al-127	2	-	-	-	0.375	O	Al-278
Al-134	4	4	-	-	0.375	L	Al-123
Al-135	4	4	16	16	0.375	C	-

Al-136	4	4	16	16	0.375	0	-
Al-137	4	4	-	-	0.375	C	Al-135
Al-138	4	4	-	-	0.375	0	Al-136
Al-147	4	4	-	-	0.375	0	Al-136
Al-148	4	4	-	-	0.375	C	Al-135
Al-158	4	4	-	-	0.375	C	Al-135
Al-168	4	4	-	-	0.375	0	Al-136
Al-278	4	4	8	8	0.375	0	-
Al-347	2	4	-	-	0.375	C	Al-125
Al-356	2	4	-	-	0.375	0	Al-278
Al-378	2	-	-	-	0.375	C	Al-125
Sc-1234	2	2	2	2	0.5	L	-
Sc-1235	4	4	16	16	0.5	C	-
Sc-1236	4	4	-	-	0.5	C	Sc-1235
Sc-1237	2	4	8	8	0.5	C	-
Sc-1247	2	4	8	8	0.5	L	-
Sc-1256	1	1	2	2	0.5	C	-
Sc-1257	4	4	16	16	0.5	C	-
Sc-1278	2	2	2	2	0.5	0	-
Sc-1345	4	4	-	-	0.5	C	Sc-1237
Sc-1346	4	4	-	-	0.5	L	Sc-1247
Sc-1347	4	4	-	-	0.5	C	Sc-1235
Sc-1357	4	2	4	4	0.5	C	-
Sc-1358	2	4	8	8	0.5	C	-
Sc-1367	4	4	-	-	0.5	C	Sc-1358
Sc-1368	2	2	4	4	0.5	0	-
Sc-1457	2	-	-	-	0.5	C	Sc-1358
Sc-2347	4	4	-	-	0.5	C	Sc-1235
Sc-2367	-	2	-	-	0.5	C	Sc-1357
Sc-2356	4	4	-	-	0.5	C	Sc-1257
Sc-2358	2	2	-	-	0.5	O	Sc-1368
Sc-3457	4	4	-	-	0.5	C	Sc-1257
Sc-3458	4	4	-	-	0.5	C	Sc-1257
Sc-3478	1	1	-	-	0.5	C	Sc-1256

Sc-3567	2	-	-	-	0.5	C	Sc-1237
Sc-4567	2	-	-	-	0.5	L	Sc-1247
Sc-123	2	4	8	8	0.675	L	-
Sc-124	2	-	-	-	0.675	L	Sc-123
Sc-125	4	4	8	8	0.675	C	-
Sc-127	2	-	-	-	0.675	0	Sc-278
Sc-134	4	4	-	-	0.675	L	Sc-123
Sc-135	4	4	16	16	0.675	C	-
Sc-136	4	4	16	16	0.675	0	-
Sc-137	4	4	-	-	0.675	C	Sc-135
Sc-138	4	4	-	-	0.675	0	Sc-136
Sc-147	4	4	-	-	0.675	0	Sc-136
Sc-148	4	4	-	-	0.675	C	Sc-135
Sc-158	4	4	-	-	0.675	C	Sc-135
Sc-168	4	4	-	-	0.675	0	Sc-136
Sc-278	4	4	8	8	0.675	0	-
Sc-347	2	4	-	-	0.675	C	Sc-125
Sc-356	2	4	-	-	0.675	0	Sc-278
Sc-378	2	-	-	-	0.675	C	Sc-125
Sc-12	2	2	4	4	0.75	L	-
Sc-13	4	4	8	8	0.75	L	-
Sc-15	2	2	-	-	0.75	C	Sc-48
Sc-16	2	2	4	4	0.75	0	-
Sc-17	4	4	8	8	0.75	0	-
Sc-18	4	4	-	-	0.75	0	Sc-17
Sc-38	1	-	-	-	0.75	0	Sc-16
Sc-47	1	2	-	-	0.75	0	Sc-16
Sc-48	2	2	4	4	0.75	C	-
Sc-58	4	4	-	-	0.75	L	Sc-13
Sc-78	2	2	-	-	0.75	L	Sc-12
Sc-1	4	4	8	8	0.825	E	-
Sc-3	2	4	-	-	0.825	E	Sc-1
Sc-8	2	-	-	-	0.825	E	Sc-1
Sc-MIL-53	1	1	1	1	0	E	-

${ }^{a} \mathrm{~L}=$ layers, $\mathrm{C}=$ chains, $\mathrm{E}=$ end member/low mixing and $\mathrm{O}=$ less ordering.
${ }^{\text {b }}$ The equivalent OP and HT cation arrangement after removing symmetry restraints from the given NP or LT unit cell.

S2. Calculation of the reference shielding

Reference shieldings ($\sigma_{\text {reff }}$) were determined for all nuclei present (i.e., ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{17} \mathrm{O}$, ${ }^{27} \mathrm{Al}$ and ${ }^{45} \mathrm{Sc}$) by comparing calculated values of $\sigma_{\text {iso }}$ to experimental values of $\delta_{\text {iso }}$ for a model system, with

$$
\begin{equation*}
\sigma_{\text {iso }}=m \delta_{\text {iso }}+\sigma_{\text {ref }}, \tag{S2.1}
\end{equation*}
$$

where m is the gradient, sometimes referred to as a scaling factor, and $\sigma_{\text {ref }}$ is determined from the y intercept. For ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{17} \mathrm{O}$ and ${ }^{27} \mathrm{Al}$, these values were obtained by comparison of the calculated and experimental NMR parameters for OP AI-MIL-53. Plots of calculated σ iso against experimental $\delta_{\text {iso }}$ for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{17} \mathrm{O}$ are shown in Figure S2.1. Using Equation S2.1, values for the gradient, m , and the reference shielding, $\sigma_{\text {ref, }}$ were calculated to be: -1.117 and 30.873 , respectively, for ${ }^{1} \mathrm{H} ;-0.958$ and 163.59 , respectively, for ${ }^{13} \mathrm{C}$; and -1.105 and 272.16 , respectively, for ${ }^{17} \mathrm{O}$. For ${ }^{27} \mathrm{Al}$, a single peak is observed in the spectrum with $\delta_{\text {iso }}=3 \mathrm{ppm}$, and therefore the average of the eight ${ }^{27} \mathrm{Al}$ calculated $\sigma_{\text {iso }}$ values was taken (for the eight metal sites in the unit cell of Al-MIL-53), giving $\sigma_{\text {ref }}=556.42 \mathrm{ppm}$. For ${ }^{45} \mathrm{Sc}$, $\sigma_{\text {ref }}=772.85 \mathrm{ppm}$ was used based on experimental ${ }^{45}$ Sc $\delta_{\text {iso }}$ values (54.7 ppm and 56.5 ppm) for LT Sc-MIL-53. ${ }^{\mathrm{s2}}$ Note that while differences in absolute values (and small differences in relative values) may be expected if calculations are referenced differently (e.g., using different model materials or a wider set of materials) these will not affect the overall trends and conclusions outlined in the main text.

Figure S2.1 Plots of calculated $\sigma_{\text {iso }}$ against experimental $\delta_{\text {iso }}$ for OP AI-MIL-53 and corresponding lines of best fit for (a) ${ }^{1} \mathrm{H}$, (b) ${ }^{13} \mathrm{C}$ and (c) ${ }^{17} \mathrm{O}$.

S3. Comparison of results from different versions of CASTEP

As described in the methods section of the main text, calculations have been carried out using CASTEP ${ }^{\text {S5-S8 }}$ versions 18.1 and 19.11. Comparisons of $\sigma_{\text {iso }}$ and, where applicable, C_{Q} values for the calculated ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{17} \mathrm{O}$ and ${ }^{27} \mathrm{AI}$ NMR parameters in the HT and LT forms of AI-MIL-53 determined using CASTEP 18.1 and CASTEP 19.11 are shown in Figures S3.1-S3.6. These plots show the calculated $\sigma_{\text {iso }}$ and C_{Q} values for the two codes typically agree well with one another (as expected), and where deviations do occur these are typically small, such as for the calculated ${ }^{27} \mathrm{Al} \mathrm{C}_{\mathrm{Q}}$ values. This indicates that calculated parameters obtained using the two versions of the code are consistent and can be considered together.

Figure S3.1 Plots showing calculated ${ }^{1} \mathrm{H}$ бiso values determined using CASTEP versions 18.1 and 19.11 for (a) HT and (b) LT AI-MIL-53. The grey lines indicate $y=x$.

Figure S3.2 Plots showing calculated ${ }^{13} \mathrm{C}$ oiso values determined using CASTEP versions 18.1 and 19.11 for (a) HT and (b) LT AI-MIL-53. The grey lines indicate $y=x$.

Figure S3.3 Plots showing calculated ${ }^{17} \mathrm{O}$ oiso values determined using CASTEP versions 18.1 and 19.11 for (a) HT and (b) LT Al-MIL-53. The grey lines indicate $y=x$.

Figure S3.4 Plots showing calculated ${ }^{27} \mathrm{Al} \sigma_{\text {iso }}$ values determined using CASTEP versions 18.1 and 19.11 for (a) HT and (b) LT AI-MIL-53. The grey lines indicate $y=x$. Note the very small scales on both axes.

Figure S3.5 Plots showing calculated ${ }^{17} \mathrm{O} \mathrm{C}_{Q}$ values determined using CASTEP versions 18.1 and 19.11 for (a) HT and (b) LT AI-MIL-53. The grey lines indicate $y=x$.

Figure S3.6 Plots showing calculated ${ }^{27} \mathrm{Al} \mathrm{C}_{Q}$ values determined using CASTEP versions 18.1 and 19.11 for (a) HT and (b) LT AI-MIL-53. The grey lines indicate $y=x$. Note the very small scales on both axes.

S4. Calculated unit cell volumes

Figure S 4.1 shows the calculated unit cell volume for the four different pore forms of ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 as a function of the cation composition. In general, the unit cell volume increases with increasing x, likely because of the increased size of Sc $^{3+}(0.745$ \AA) over $\mathrm{Al}^{3+}(0.535 \AA) .{ }^{59}$ This volume increase is the largest for the OP form.

Figure S4.1 Plots showing the calculated unit cell volume as a function of the composition of the (a) OP, (b) NP (c) HT and (d) LT forms of (Al $1_{1-x} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53.

S5. Calculation of degeneracy-weighted $E_{\text {mix }}$

Figure S 5.1 shows the calculated degeneracy-weighted $\mathrm{E}_{\text {mix }}$ values for the four pore forms of $\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53 as a function of the cation composition. For all four forms $E_{\text {mix }}$ is slightly more favourable (though still enthalpically unfavourable overall) for higher values of x . This suggests it is (relatively) more favourable to substitute the smaller Al^{3+} cation into a Sc-containing framework, rather than vice versa. The degeneracies for each structural model are provided in Table S1.1.

Figure S5.1 Plots of degeneracy-weighted mixing enthalpies for (a) OP, (b) NP, (c) HT and (d) LT $\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53 as a function of composition

S6. Additional calculated NMR parameters

Figure S 6.1 shows the origin of the two unique C 1 environments in $\mathrm{LT}\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL53, $\mathrm{C} 1_{\mathrm{a}}$ and $\mathrm{C} 1_{\mathrm{b}}$ which arise due to the tilting of the MO_{6} octahedra.

Figure S6.1 Schematic showing the two unique C 1 environments in the LT form of ($\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53, shown here for $\mathrm{x}=1$. These two environments arise due to tilting of the MO_{6} octahedra which affects the $\mathrm{O}-\mathrm{C} 1-\mathrm{O}$ bond angle and results in different ${ }^{13} \mathrm{C} \mathrm{C} 1 \delta$ iso values.

Figure S 6.2 shows plots of ${ }^{1} \mathrm{H} \delta_{\text {iso }}$ as a function of composition for all four pore forms of $\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53. Figure S 6.3 shows plots of ${ }^{2} \mathrm{H} \mathrm{C}_{Q}$ against $\delta_{\text {iso }}$ for all four pore forms of $\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53.

Figure S6.2 Plots showing calculated ${ }^{1} \mathrm{H} \delta_{\text {iso }}$ for (a) OP, (b) NP, (c) HT and (d) LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 as a function of composition, coloured by type of ${ }^{1} \mathrm{H}$.

Figure S6.3 Plots showing calculated ${ }^{2} \mathrm{HCQ} \mathrm{C}_{\mathrm{Q}}$ against $\delta_{\text {iso }}$ (a) OP, (b) NP, (c) HT and (d) LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53, coloured by type of ${ }^{2} \mathrm{H}$.

Figure S 6.4 shows the correlation between the calculated ${ }^{17} \mathrm{O} \delta_{\text {iso }}$ value and the Sc -$\mathrm{O}-\mathrm{Sc}$ angle for $\mathrm{Sc}-\mathrm{O}(\mathrm{H})$-Sc groups in OP $\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53.

Figure S6.4 Plot showing calculated ${ }^{17} \mathrm{O} \delta_{\text {iso }}$ values for $\mathrm{Sc}-\mathrm{O}(\mathrm{H})$-Sc groups in $\mathrm{OP}\left(\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53 plotted as a function of the $\mathrm{Sc}-\mathrm{O}-\mathrm{Sc}$ angle, coloured by the composition of the overall framework.

Figure S 6.5 shows a plot of calculated ${ }^{17} \mathrm{O} \mathrm{C}_{Q}$ against $\delta_{\text {iso }}$ for oxygens in all four pore forms of $\left(\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53, in which distinct carboxylate groups can be seen for the NP, HT and LT forms.

Figure S6.5 Plots of calculated ${ }^{17} \mathrm{O} \mathrm{CQ}_{\mathrm{Q}}$ against $\delta_{\text {iso }}$ for (a) OP, (b) NP, (c) HT and (d) LT (Al1-xScx)-MIL53 , coloured by the type of oxygen.

Figure S 6.6 plots the calculated ${ }^{17} \mathrm{O} \mathrm{C}_{\mathrm{Q}}$ against $\delta_{\text {iso }}$ for carboxylate groups bonded to Sc^{3+} in $\mathrm{LT}\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53, showing variation with both the $\mathrm{Sc}-\mathrm{O}$ bond length and $\mathrm{Sc}-\mathrm{O}=\mathrm{C}$ angle. No direct dependence is seen on the type of cation arrangement or composition.

Figure S6.6 Plots of calculated ${ }^{17} \mathrm{O} \mathrm{C}_{\mathrm{Q}}$ values for $\mathrm{Sc}-\mathrm{O}=\mathrm{C}$ groups in $\mathrm{LT}\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53 plotted as a function of (a, b) the $\mathrm{Sc}-\mathrm{O}=\mathrm{C}$ angle and (c, d) the $\mathrm{O}-\mathrm{Sc}$ bond length, coloured by (a, c) type of cation arrangement and (b, d) composition.

Figures S 6.7 and 6.8 plot the calculated ${ }^{17} \mathrm{O} \delta_{\text {iso }}$ and C_{Q} as a function of the distance between the carboxylate O and the hydrogen atom of the OH group across the pore for LT Sc-MIL-53 (Figure S6.7) and LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 (Figure S6.8).

Figure S6.7 Plots of calculated ${ }^{17} \mathrm{O}$ (a) $\delta_{\text {iso }}$ and (b) C_{Q} values for $\mathrm{Sc}-\mathrm{O}=\mathrm{C}$ groups in LT Sc-MIL-53 plotted as a function of the distance between the carboxylate oxygen and the hydrogen atom of the OH group across the pore.

Figure S6.8 Plots of calculated ${ }^{17} \mathrm{O}(\mathrm{a}) \delta_{\text {iso }}$ and (b) C_{Q} values for $\mathrm{Sc}-\mathrm{O}=\mathrm{C}$ groups in $\mathrm{LT}\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL53 (for all x) plotted as a function of the distance between the carboxylate oxygen and the hydrogen atom of the OH group across the pore.

Figures S6.9 and S6.10 plot the calculated $\delta_{\text {iso }}$ values for ${ }^{27} \mathrm{Al}$ and ${ }^{45} \mathrm{Sc}$, respectively, for different compositions of $\left(\mathrm{Al}_{1-x} S \mathrm{c}_{\mathrm{x}}\right)$-MIL-53 for each of the four pore forms. For each nucleus two different types of cations site are seen, depending on the nature of the next nearest cations. (Note owing to the imposed ordering discussed in the main text these can only both be Al^{3+} or both be Sc^{3+}).

Figure S6.9 Plots showing calculated ${ }^{27} \mathrm{Al} \delta_{\text {iso }}$ for (a) OP, (b) NP, (c) HT and (d) LT ($\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 for varying compositions, coloured by the type of next nearest neighbouring metals.

Figure S6.10 Plots showing calculated ${ }^{45}$ Sc $\delta_{\text {iso }}$ for (a) OP, (b) NP, (c) HT and (d) LT ($\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 for varying compositions, coloured by the type of next nearest neighbouring metals.

Figures S 6.11 and S 6.12 show plots of C_{Q} against $\delta_{\text {iso }}$ for ${ }^{27} \mathrm{Al}$ and ${ }^{45} \mathrm{Sc}$, respectively, for all four pore forms of $\left(\mathrm{Al}_{1-x} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53.

Figure S6.11 Plots of calculated ${ }^{27} \mathrm{Al} \mathrm{C}_{\mathrm{Q}}$ against $\delta_{\text {iso }}$ for (a) OP, (b) NP, (c) HT and (d) LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53, coloured by type of next nearest neighbouring metals.

Figure S6.12 Plots of calculated ${ }^{45}$ Sc C_{Q} against $\delta_{\text {iso }}$ for (a) OP, (b) NP, (c) HT and (d) LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53, coloured by type of next nearest neighbouring metals.

Figure S6.13 plots ${ }^{45} \mathrm{Sc} \delta_{\text {iso }}$ as a function of the difference in the average $\mathrm{Sc}-\mathrm{OH}$ and Sc-OC bond lengths (<Sc-OC> - <Sc-OH>) for a given ScO_{6} octahedra for ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53 in the LT form coloured by the overall framework composition. These plots show a linear relationship between the two for both types of Sc^{3+}. Figure S 6.14 shows the change in average $\mathrm{Sc}-\mathrm{OH}$ bond length is greatest for Sc^{3+} in the $\mathrm{Al}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}-\mathrm{O}(\mathrm{H})-$ Al environment compared to that of $\mathrm{Sc}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}$ indicating greater structural variation around Sc^{3+} due to the presence of Al^{3+}, likely driven by differences in cation size distorting the framework structure. ${ }^{59}$
a
$\mathrm{Sc}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}$
b
Al-O(H)-Sc-O(H)-Al

Figure 6.13 Plots of calculated ${ }^{45} \mathrm{Sc} \delta_{\text {iso }}$ as a function of the difference in the average $\mathrm{Sc}-\mathrm{OH}$ and Sc OC bond lengths for the ScO_{6} octahedra in $\mathrm{LT}\left(\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}\right)$-MIL-53 for (a) $\mathrm{Sc}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}-\mathrm{O}(\mathrm{H})-\mathrm{Sc}$ and (b) Al-$\mathrm{O}(\mathrm{H})-\mathrm{Sc}-\mathrm{O}(\mathrm{H})-$ Al. Points are coloured by composition of the overall framework.

Figure 6.14 Plot of the average $\mathrm{Sc}-\mathrm{OC}$ bond length against the average $\mathrm{Sc}-\mathrm{OH}$ bond length for the ScO_{6} octahedra in LT ($\mathrm{Al}_{1-\mathrm{x}} \mathrm{Sc}_{\mathrm{x}}$)-MIL-53, coloured by the type of next nearest neighbouring metals.

S7. Calculation of δ_{1} and δ_{2} for al $=5 / 23$ QMAS NMR spectrum

The position of the centre-of-gravity $\left(\delta_{1}, \delta_{2}\right)$ can be calculated (for a specified magnetic field) for a 3QMAS NMR spectrum for a spin I $=5 / 2$, using the referencing convention specific in Ref. S10, with

$$
\begin{gather*}
\delta_{1}=\frac{17}{31} \delta_{\text {iso }}+\frac{32}{96} \delta_{Q}, \tag{S7.1}\\
\delta_{2}=\delta_{\text {iso }}-\frac{32}{96} \delta_{Q}, \tag{S7.2}
\end{gather*}
$$

where δ_{Q} is

$$
\begin{equation*}
\delta_{Q}=\frac{3000}{40} \frac{\mathrm{PQ}_{\mathrm{Q}}}{v_{0}} . \tag{S7.3}
\end{equation*}
$$

v_{0} is the Larmor frequency at the specific field and P_{Q} is defined as

$$
\begin{equation*}
P_{Q}=C_{Q} \sqrt{\left(1+\frac{\eta_{Q}^{2}}{3}\right)}, \tag{S7.4}
\end{equation*}
$$

where η_{Q} is the asymmetry of the quadrupolar tensor. ${ }^{S 11}$

References

S1. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, Chem. Eur. J., 2004, 10, 1373-1382.

S2. J. P. S. Mowat, V. R. Seymour, J. M. Griffin, S. P. Thompson, A. M. Z. Slawin, D. Fairen-Jimenez, T. Düren, S. E. Ashbrook and P. A. Wright, Dalton Trans., 2012, 41, 3937-3941.

S3. G. P. M. Bignami, Z. H. Davis, D. M. Dawson, S. A. Morris, S. E. Russell, D. McKay, R. E. Parke, D. luga, R. E. Morris and S. E. Ashbrook, Chem. Sci., 2018, 9, 850-859.

S4. R. Grau-Crespo, S. Hamad, C. R. A. Catlow and N. H. de Leeuw, J. Phys. Condens. Matter, 2007, 19, 256201.

S5. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Für Krist. - Cryst. Mater., 2005, 220, 567-570.

S6. C. J. Pickard and F. Mauri, Phys. Rev. B, 2001, 63, 245101.
S7. J. R. Yates, C. J. Pickard and F. Mauri, Phys. Rev. B, 2007, 76, 024401.
S8. M. Profeta, F. Mauri and C. J. Pickard, J. Am. Chem. Soc., 2003, 125, 541-548.
S9. R. D. Shannon, Acta Crystallogr. A, 1976, 32, 751-767.
S10. K. J. Pike, R. P. Malde, S. E. Ashbrook, J. McManus and S. Wimperis, Solid State Nucl. Magn. Reson., 2000, 16, 203-215.

S11. S. E. Ashbrook, D. M. Dawson and J. M. Griffin, in Local Structural Characterisation, Eds. D. W. Bruce, D. O'Hare and R. I. Walton, John Wiley \& Sons, Chichester, 2014.

