Supporting Information

Theoretical Study of Highly Efficient VS$_2$-based Single-Atom Catalysts in Lithium-Sulfur Batteries

Yao Liu1,2, Yang Li1,2, Jinhui Zhang1,2, Jing Xu$^{2, *}$, Dashuai Wang$^{1, 3, *}$

1Institute of Zhejiang University-Quzhou, 324000, China
2Department of Physics, College of Science, Yanbian University, Yanji, 133002, China
3Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
Fig. S1. Stable configurations of (a) Fe (b) Co (c) Ni (d) Ti (e) Sc on VS$_2$ monolayer.

Fig. S2. TDOSs and PDOSs of Fe@VS$_2$, Co@VS$_2$ and Sc@VS$_2$ monolayers. The Fermi level was set to zero.
g. S3. The most stable adsorption configurations of L_2S_n and S_8 on (a) Fe@VS$_2$, (b) Co@VS$_2$, and (c) Sc@VS$_2$.
Fig. S4. Charge density difference of Li$_2$S$_n$ ($n = 1, 4, 8$) and S$_8$ on (a) Fe@VS$_2$ (b) Co@VS$_2$ (c) Ni@VS$_2$ and (d) Sc@VS$_2$.

Fig. S5. 2D slice of ELF for (a) Li$_2$S$_6$ and (b) Li$_2$S$_8$ adsorbed on Ti@VS$_2$ substrate. 2D slice of ELF for (c) Li$_2$S$_6$ and (d) Li$_2$S$_8$ adsorbed on Fe@VS$_2$ substrate.
Fig. S6. (a) The detailed decomposition path of Li$_2$S on Ni@VS$_2$. The diffusion pathways of lithium atom on (b) Ni@VS$_2$ (c) Sc@VS$_2$.

Fig. S7. PDOSs of VS$_2$ monolayer. Here, the PDOS by DS-PAW method (a) is consistent with that by Perdew–Burke–Ernzerh of exchange correlation function within the generalized gradient approximation (b).