Supporting Information

Theoretical Study of Highly Efficient VS₂-based Single-Atom Catalysts in

Lithium-Sulfur Batteries

Yao Liu^{1,2}, Yang Li^{1,2}, Jinhui Zhang^{1,2}, Jing Xu^{2, *}, Dashuai Wang^{1, 3, *}

¹Institute of Zhejiang University-Quzhou, 324000, China

²Department of Physics, College of Science, Yanbian University, Yanji, 133002, China

³Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of

Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China

Fig. S1. Stable configurations of (a) Fe (b) Co (c) Ni (d) Ti (e) Sc on VS_2 monolayer.

Fig. S2. TDOSs and PDOSs of Fe@VS₂, Co@VS₂ and Sc@VS₂.

g. S3. The most stable adsorption configurations of L_2S_n and S_8 on (a) Fe@VS₂ (b) Co@VS₂ and (c) Sc@VS₂.

Fig. S4. Charge density difference of Li_2S_n (n = 1, 4, 8) and S_8 on (a) Fe@VS₂ (b) Co@VS₂ (c) Ni@VS₂ and (d) Sc@VS₂.

Fig. S5. 2D slice of ELF for (a) Li_2S_6 and (b) Li_2S_8 adsorbed on Ti@VS₂ substrate. 2D slice of ELF for (c) Li_2S_6 and (d) Li_2S_8 adsorbed on Fe@VS₂ substrate.

Fig. S6. (a)The detailed decomposition path of Li_2S on $Ni@VS_2$. The diffusion pathways of lithium atom on (b) $Ni@VS_2$ (c) $Sc@VS_2$.

ig. S7. PDOSs of VS₂ monolayer. Here, the PDOS by DS-PAW method (a) is consistent with that by Perdew–Burke–Ernzerh of exchange correlation function within the generalized gradient approximation (b).