Electronic Supplementary Information

Constructing Perfect Cubic Ag-Cu Alloyed Nanoclusters through

Selective Elimination of Phosphine Ligands

Li Tang,^{a,‡} Qikai Han,^{a,‡} Bin Wang^a, Zhonghua Yang,^b Chunyuan Song,^a Guanyu Feng,^a and Shuxin Wang^{*a}

^aCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

^b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

*E-mail of corresponding author: shuxin_wang@qust.edu.cn

Table of Contents

Section 1. Experimental Procedures

Characterization

Materials and Synthesis

Section 2. Supplementary Figures

Fig. S1 An optical microscopic image of the single crystals of $Ag_{55}Cu_8I_{12}$.

Fig. S2 X-ray photoelectron spectroscopy (XPS) of $Ag_{55}Cu_8I_{12}$.

Fig. S3 SEM image and energy-dispersive X-ray spectrum(EDX) of Ag₅₅Cu₈I₁₂.

Fig. S4 The thermogravimetric analysis (TGA) results of Ag₅₅Cu₈I₁₂ under a N₂ atmosphere.

Fig. S5 ³¹P-NMR spectrum of Ag₅₅Cu₈I₁₂.

Fig. S6 ¹H-NMR spectrum of **Ag₅₅Cu₈I₁₂**.

Fig. S7 ¹H-NMR spectrum of PPh₄Br.

Fig. S8 Energy scale spectra of (a) Ag₅₅Cu₈I₁₂ and (b) Ag₆₃.

Fig. S9 The overall structure of the Ag₅₅Cu₈I₁₂.

Fig. S10 Comparing the deviations in the edges of the cubic structures between $Ag_{55}Cu_8I_{12}$ and Ag_{63} .

Fig. S11 UV-Vis spectra of 1,2-dichloroethane solutions of $Ag_{55}Cu_8I_{12}$ heated in air at 50 $^\circ$ C for different times.

Fig. S12 Packing of the $Ag_{55}Cu_8I_{12}$ and Ag_{63} in crystal lattices.

Section 3. Supplementary Tables

Table S1 Crystal data and structure refinement for the Ag₅₅Cu₈I₁₂.

Table S2 The atomic ratio of Ag and Cu in Ag₅₅Cu₈I₁₂ was calculated from XPS, ICP and EDX measurements.

Table S3 Comparison of different bond lengths in $Ag_{55}Cu_8I_{12}$ and Ag_{63} crystal structures.

Table S4 Comparing the bond lengths deviations on the edges of the cubic structures between Ag₅₅Cu₈I₁₂ and Ag₆₃.

Table S5 Comparing the angular deviations on the edges of the cubic structures between Ag₅₅Cu₈I₁₂ and Ag₆₃. Section 4. References

1. Experimental Procedures

Characterization

The UV-Vis absorption spectra of nanoclusters were performed on UV-8000 spectrophotometer. X-ray photoelectron spectroscopy (XPS) measurements were acquired an ESCALAB XI+, with a mono chromate AlK α (1486.8 eV) 150 W X-ray source, 0.5 mm circular spot size, a flood gun to counter charging effects, and analysis chamber base pressure lower than 1 x 10⁻⁹ mbar. A Scanning Electron Microscope (SEM) analysis was performed using an */S-4800 microscope, which operated within an accelerating voltage range of 0.1-30 kV. Nuclear magnetic resonance (NMR) measurements were performed on a Bruker Avance II spectrometer. For ¹H and ³¹P NMR, CD₂Cl₂ was used as the solvent to dissolve all crystal samples. Inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements were collected on an AtomScan Advantage instrument made by Thermo Jerrell Ash Corporation. Thermo gravimetric analysis (TGA) was carried out on ST 8000, 5 mg of the nanocluster at a heating rate of 10 K min⁻¹ from room temperature to 773.15K.

The SC-XRD data of the $Ag_{55}Cu_8 I_{12}$ nanoclusters was collected using a Bruker D8 QUEST X-ray single-crystal diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) at 170K. The nanocluster structures were solved using the ShelXT structure solution program via intrinsic phasing in Olex2. Subsequently, the full matrix least squares method was used to improve the structure of F² using the SHELXTL software package.

Materials

Silver nitrate (AgNO₃; \geq 99.99%; metal basis), copper iodide (CuI; >99.99%, metal basis), Triphenylphosphine (PPh₃, 99%), Tetraphenyl phosphorus bromide (BrPPh; 99%), 2,4dimethylbenzenethiol (HS-C₆H₃^{2,4}(CH₃)₂; 98%), sodium borohydride (NaBH₄; \geq 99%, Aldrich), triethylamine (C₆H₁₅N, \geq 99%, Aldrich), *n*-hexane (C₆H₁₄, Hex; \geq 99%, Aldrich), dichloromethane (CH₂Cl₂; \geq 99%, Aldrich) and methanol (CH₃OH; \geq 99%, Aldrich) were used in the experiments. All chemicals are commercially available and used as received.

Synthesis of the Ag₅₅Cu₈I₁₂ nanocluster

The preparation of $Ag_{55}Cu_8I_{12}$ was based on the method reported by Zheng's group with minor modifications.^[51] AgNO₃ (40 mg) was dissolved in a mixture solution containing 3 mL of methanol and 10 mL of CH₂Cl₂ under vigorously stirred. After stirring for 2 minutes, 50 mg of PPh₃, 20 mg of PPh₄Br, and 163 µL of 2, 4dimethylbenzenethiol (HS-C₆H₃^{2,4}(CH₃)₂) was added to the reaction mixture in turn, which was vigorously stirred for an additional 15 minutes. Cul (25 mg) was introduced to the reaction solution. A freshly prepared solution of NaBH₄ (160 mg) and 100 µL of triethylamine dissolved in 2 mL of ice-cold pure water was quickly added to the reaction mixture, causing the light yellow solution to immediately darken. The reaction was allowed to proceed for 12 hours. Finally, the solution was concentrated to 4 mL using a rotary evaporator and washed multiple times with excess MeOH to remove excess thiolate. This extraction process was repeated several times. The resulting solution was then centrifuged to obtain a solid precipitate, which was dissolved in CH₂Cl₂ and *n*-hexane at 4°C. After approximately one week (Fig. S1), crystals of $Ag_{55}Cu_8I_{12}$ were obtained with a yield of approximately 56% based on the silver content.

2. Supplementary Figures

Fig. S1 An optical microscopic image of the single crystals of $Ag_{55}Cu_8I_{12}$.

Fig. S2 X-ray photoelectron spectroscopy (XPS) of $Ag_{55}Cu_8I_{12}$. a) XPS, b) Cu 2p, c) Cu LMM, d) Ag 3d, e) XPS of measured Ag $3d_{5/2}$ (black curve), fitting line of Ag $3d_{5/2}$ (red curve), base line (green curve), fitting line of Ag (I) (blue curve) and fitting line of Ag (0) (turquiose curve). f) I 3d, g) P 2p, h) S 2p.

Fig. S3 (a) SEM image of a small deformed single crystal of **Ag**₅₅**Cu**₈**I**₁₂. (b-g) are the elemental maps of Ag, Cu, I, S, C, and P, respectively. (h) EDX spectrum, confirming the presence of the above elements in the cluster, which is consistent with the cluster composition obtained by SCXRD data.

Fig. S4 The thermogravimetric analysis (TGA) results of Ag₅₅Cu₈I₁₂ under a N₂ atmosphere.

Fig. S5 ³¹P-NMR spectrum of Ag₅₅Cu₈I₁₂.

Fig. S6 ¹H-NMR spectrum of $Ag_{55}Cu_8I_{12}$. Notes: * = CD_2CI_2 ; # = H_2O ; & = n-hexane.

7.95 7.92 7.92 7.92 7.92 7.92 7.73 7.73 7.75 7.75 7.75 7.76 7.76 7.76 7.76 7.63 7.63 7.63

Fig. S7 ¹H-NMR spectrum of PPh₄Br. Notes: * stands for CD_2CI_2 .

Fig. S8 Energy scale spectra of (a) $Ag_{55}Cu_8I_{12}$ and (b) Ag_{63} .

Fig. S9 The overall structure of the Ag₅₅Cu₈I₁₂. Color legends: Ag = dark green, Cu = orange, S = yellow, I = brown, P = magenta. For clarity, C and H atoms are all omitted.

Fig. S10 Comparing the deviations in the edges of the cubic structures between (a) $Ag_{55}Cu_8I_{12}$ and (b) Ag_{63} .

Fig. S11 UV-Vis spectra of 1,2-dichloroethane solutions of (a) $Ag_{55}Cu_8I_{12}$ and (b) Ag_{63} heated in air at 50°C for different times.

Fig. S12 Panels (a-c) illustrate the packing of $Ag_{55}Cu_8I_{12}$ and panels (d-f) show Ag_{63} within crystal lattices, viewed from the x-axis (a, d), y-axis (b, e), and z-axis (c, f). The color legend is as follows: Ag in dark green, Cu in orange, S in yellow, I in brown, and P in magenta. For enhanced clarity, carbon and hydrogen atoms have been omitted.

3. Supplementary Tables

Empirical formula	C ₂₁₆ H ₂₃₆ Ag ₅₅ I ₁₂ Cu ₈ PS ₂₄		
Formula weight	11596.41		
Temperature/K	170		
Crystal system	monoclinic		
Space group	C2/m		
Unit cell dimensions	a = 37.341(5) Å	α= 90 °	
	b = 24.083(3) Å	β= 125.295(2) °	
	c = 22.341(3)	γ= 90°	
Volume/ų	16398(4)		
Z	2		
ρ calcg/cm3	2.349		
μ/mm-1	5.023		
F(000)	10768.0		
Crystal size/mm3	0.07 × 0.05 × 0.05		
Radiation	ΜοΚα (λ = 0.71073)		
2 $^{ heta}$ range for data collection/°	4.084 to 52.778		
Index ranges	$-46 \le h \le 41, -30 \le k \le 29, -27 \le l \le 27$		
Reflections collected	35734		
Independent reflections	16890 [Rint = 0.0635, Rsigma = 0.0935]		
Data/restraints/parameters	16890/3224/1162		
Goodness-of-fit on F2	0.925		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0710, wR ₂ = 0.1992		
Final R indexes [all data]	R ₁ = 0.1541, wR ₂ = 0.2576		
Largest diff. peak/hole / e Å ⁻³	2.13/-0.79		

Table S1 Crystal data and structure refinement for the $Ag_{55}Cu_8I_{12.}$

Measurement	Ag(%)	Cu(%)
XPS results	86.9	13.1
ICP results	87.2	12.8
EDX results	86.5	13.5
Theoretical results	55/63 (87.3)	8/63(12.7)

Table S2 The atomic ratio of Ag and Cu in Ag₅₅Cu₈I₁₂ was calculated from X-ray photoelectric spectroscopy (XPS), inductively coupled plasma (ICP) and energy-dispersive X-ray spectrum (EDX) measurements.

Table S3 Comparison of different bond lengths in $Ag_{55}Cu_8I_{12}$ and Ag_{63} crystal structures.

Cluster	Ag ₅₅ Cu ₈ I ₁₂			Ag ₆₃		
Bond length (Å)	min.	max.	average	min.	max.	average
Ag(C)-Ag(SS)	2.883	2.886	2.885	2.878	2.897	2.886
Ag(SS)-Ag(SS)	2.877	2.893	2.886	2.845	2.963	2.886
Ag(SS)-Ag(S)	2.806	3.152	2.904	2.835	3.267	2.938
Ag(S)-Ag(S)	2.811	3.241	2.953	2.852	3.178	2.982
Ag-Cu	2.85	3.003	2.904	-	-	-
Cu-S	2.24	2.325	2.287	-	-	-
Ag-I	2.826	2.968	2.894	-	-	-
Ag-S	2.461	2.739	2.581	2.495	2.74	2.587
Ag-P	-	-	-	2.394	2.406	2.392

Notes:

Ag(S) stands for the surface silver atom covered by thiolate;

Ag(SS) stands for the subsurface Ag atom adjacent to the surface Ag atom;

Ag(C) stands for the central Ag atom.

Tabel S4 Comparing the bond length deviations on the edges of the cubic structures between $Ag_{55}Cu_8I_{12}$ and Ag_{63} .

Cluster			Ag ₅₅ Cu ₈ I ₁₂	Ag ₆₃	
	Ag ₅₅ Cu ₈ I ₁₂	Ag ₆₃	diff. (Å)	diff. (Å)	
Bond length (Å)	- 33 0 12		i.e. 4.122+3.998-8.01	i.e. 4.838+4.796-9.514	
Cu1-Ag1 (Ag1'-Ag2')	4.122	4.838		0.12	
Ag1-Cu2 (Ag2'-Ag3')	3.998	4.796	0.019		
Cu1-Cu2 (Ag1'-Ag3')	8.101	9.514			
Cu7-Ag7 (Ag13'-Ag14')	4.122	4.838		0.12	
Ag7-Cu8 (Ag14'-Ag15')	3.998	4.796	0.019		
Cu7-Cu8 (Ag13'-Ag15')	8.101	9.514			
Cu1-Ag4 (Ag1'-Ag8')	4.006	4.953			
Ag4-Cu4 (Ag8'-Ag7')	4.204	4.795	0.02	0.097	
Cu1-Cu4 (Ag1'-Ag7')	8.19	9.651			
Cu2-Ag2 (Ag3'-Ag4')	4.006	4.838			
Ag2-Cu3 (Ag4'-Ag5')	4.204	4.796	0.02	0.12	
Cu2-Cu3 (Ag3'-Ag5')	8.19	9.514]		
Cu4-Ag3 (Ag7'-Ag6')	3.998	4.797		0.097	
Ag3-Cu3 Ag6'-Ag5')	4.122	4.953	0.019		
Cu4-Cu3 (Ag7'-Ag5')	8.101	9.653			
Cu6-Ag5 (Ag11'-Ag10')	3.998	4.797		0.097	
Ag5-Cu5 (Ag10'-Ag9')	4.122	4.953	0.019		
Cu6-Cu5 (Ag11'-Ag9')	8.101	9.653			
Cu6-Ag6 (Ag11'-Ag12')	4.204	4.795		0.097	
Ag6-Cu7 (Ag12'-Ag13')	4.006	4.953	0.02		
Cu6-Cu7 (Ag11'-Ag13')	8.19	9.651			
Cu5-Ag8 (Ag9'-Ag16')	4.204	4.796			
Ag8-Cu8 (Ag16'-Ag15')	4.006	4.838	0.02	0.12	
Cu5-Cu8 (Ag9'-Ag15')	8.19	9.514			
Cu2-Ag11 (Ag3'-Ag19')	4.121	4.953		0.098	
Ag11-Cu6 (Ag19'-Ag11')	4.121	4.796	0.022		
Cu2-Cu6 (Ag3'-Ag11')	8.22	9.651			
Cu8-Ag10 (Ag15'-Ag18')	4.121	4.953	0.022	0.098	
Ag10-Cu4 (Ag18'-Ag7')	4.121	4.796			
Cu8-Cu4 (Ag15'-Ag7')	8.22	9.651			
Cu3-Ag12 (Ag5'-Ag20')	4.044	4.838			
Ag12-Cu7 (Ag20'-Ag13')	4.044	4.796	0.025	0.12	
Cu3-Cu7 (Ag5'-Ag13')	8.063	9.514			
Cu5-Ag9 (Ag9'-Ag17')	4.044	4.838			
Ag9-Cu1 (Ag17'-Ag1')	4.044	4.796	0.025	0.12	
Cu5-Cu1 (Ag9'-Ag1')	8.063	9.514			

Table S5 Comparing the angular deviations on the edges of the cubic structures between $Ag_{55}Cu_8I_{12}$ and Ag_{63} .

Cluster			Ag ₅₅ Cu ₈ I ₁₂	Ag ₆₃
	Ag ₅₅ Cu ₈ I ₁₂	Ag ₆₃	diff. (%)	diff.(%)
Bond angle (•)			i.e. (180-172.17)/180	i.e. (180-161.89)/180
Cu1-Ag1-Cu2 (Ag1'-Ag2'-Ag3')	172.17	161.89	4.35	10.06
Cu7-Ag7-Cu8 (Ag13'-Ag14'-Ag15')	172.17	161.89	4.35	10.06
Cu1-Ag4-Cu4 (Ag1'-Ag8'-Ag7')	171.97	163.72	4.46	9.04
Cu2-Ag2-Cu3 (Ag3'-Ag4'-Ag5')	171.97	161.89	4.46	10.06
Cu4-Ag3-Cu3 (Ag7'-Ag6'-Ag5')	172.17	163.73	4.35	9.04
Cu6-Ag5-Cu5 (Ag11'-Ag10'-Ag9')	172.17	163.73	4.35	9;04
Cu6-Ag6-Cu7 (Ag11'-Ag12'-Ag13')	171.97	163.72	4.46	9.04
Cu5-Ag8-Cu8 (Ag9'-Ag16'-Ag15')	171.97	161.89	4.46	10.06
Cu2-Ag11-Cu6 (Ag3'-Ag19'-Ag11')	171.52	163.71	4.71	9.05
Cu8-Ag10-Cu4 (Ag15'-Ag18'-Ag7')	171.52	163.71	4.71	9.05
Cu3-Ag12-Cu7 (Ag5'-Ag20'-Ag13')	170.94	161.89	5.03	10.06
Cu5-Ag9-Cu1 (Ag9'-Ag17'-Ag1')	170.94	161.89	5.03	10.06

4. References

[S1] H. Yang, J. Yan, Y. Wang, H. Su, L. Gell, X. Zhao, C. Xu, B. K. Teo, H. Hakkinen and N. Zheng, J. Am. Chem. Soc., 2017, 139, 31-34.