Electronic Supplementary Information for

Dirac semimetallic Janus Ni-trihalide monolayer with strain-tunable magnetic anisotropy and electronic properties

Bo Chen, Xiaocha Wang^{1*}, Wenbo Mi^{2*},

¹Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and

Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China

²Depatment of Applied Physics, School of Science, Tianjin University, Tianjin 300354, China

^{*}Author to whom all correspondence should be addressed.

E-mail: wangxc@email.tjut.edu.cn and miwenbo@tju.edu.cn

A. Bader analysis

Bader charge analysis is calculated to quantity the charge transfer in Ni₂X₃Y₃ (X, Y=I, Br, Cl; $X \neq Y$) monolayers, as shown in Table S1.

 $\Delta q_{\rm Ni1}(e)$ $\Delta q_{\rm Ni2}(e)$ $\Delta q_{X1}(e)$ $\Delta q_{X2}(e)$ $\Delta q_{X3}(e)$ $\Delta q_{Y1}(e)$ $\Delta q_{Y2}(e)$ $\Delta q_{Y3}(e)$ Ni₂Cl₃Br₃ 0.1203 0.0864 0.1053 0.075 0.0697-0.0796-0.1936 -0.2437 $Ni_2Cl_3I_3$ 0.2804 0.2516 0.1443 0.1719 0.1405 -0.2185 -0.3888 -0.3816 Ni₂Br₃I₃ 0.3844 0.3639 0.0292 0.0523 0.0294 -0.2022 -0.335 -0.3222

Table S1 The charge transfer of each atom of Ni₂ X_3Y_3 (X, Y=I, Br, Cl; $X \neq Y$) monolayers.

B. Band structure of $Ni_2X_3Y_3$ after applying SOC

Fig. S1. The band structure of $Ni_2X_3Y_3$ using the PBE+*U*+SOC.

C. Density of states of Ni₂Cl₃I₃ and Ni₂Cl₃I₃ after applying in-plane biaxial strain

Fig. S2. The density of states of $Ni_2Br_3I_3$ and $Ni_2Br_3I_3$ after applying -6%, -4%, -2%, +2%, +4%, +6% in-plane biaxial strain.

D. Charge density difference and the planar average of electrostatic potential

after applying in-plane biaxial strain

Fig. S3. Charge density difference of $Ni_2Cl_3I_3$ after applying -4%, -2%, +2%, +4%, in-plane biaxial strain, where yellow and blue regions represent the charge gain and loss. The planar average of electrostatic potential of $Ni_2Cl_3I_3$ after applying -4%, -2%, +2%, +4%, in-plane biaxial strain.

Fig. S4. Charge density difference after applying -4%, -2%, +2%, +4%, in-plane biaxial strain of Ni₂Br₃I₃, where yellow and blue regions represent the charge gain and loss. The planar average of electrostatic potential of Ni₂Br₃I₃ after applying -4%, -2%, +2%, +4%, in-plane biaxial strain.