Comparative Analysis of M_a Site Elements in Fe-Based Prussian Blue Frame Materials for Ammonium Ion Battery Applications: A First-Principles Study

Yu Zhang, Junjie Xing, Bo Zhang, Likai Tong, Xiuli ${\rm Fu}^*$

School of Integrated Circuits, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China

* Corresponding author. xiulifu@bupt.edu.cn (X. Fu)

Fig. S1 The considered configurations of NH_4^+ embedding in Fe[Fe(CN)₆]. (a) 1 NH_4^+ , (b-d) 2 NH_4^+ , (e-f) 3 NH_4^+ , (g-i) 4 NH_4^+ , (j) 5 NH_4^+ , (k-m) 6 NH_4^+ , (n) 7 NH_4^+ , (o) 8 NH_4^+ .

Fig. S2 Front view of $M_a[Fe(CN)_6]$ (M_aFe PBAs) local models with different M_a elements. And $M_a = (a)$ Co, (b) Cu, (c) Fe, (d) Mg, (e) Mn, (f) Ni, (g) V, (h) Zn.

$\mathbf{M}_{\mathbf{a}}$	M _a -Fe (Å)	M _a -N (Å)	N-C (Å)	C-Fe (Å)
Cu	5.09	2.02	1.17	1.91
Co	4.94	1.87	1.17	1.90
Fe	4.95	1.89	1.17	1.89
Mg	5.24	2.16	1.17	1.91
Mn	4.97	1.91	1.17	1.88
Ni	4.98	1.92	1.17	1.89
V	5.04	1.99	1.18	1.87
Zn	5.22	2.14	1.17	1.91

Tab. S1 Average atomic distances of M_a Fe PBAs for different M_a elements (M_a = Co, Cu, Fe, Mg, Mn, Ni, V, Zn).

Fig. S3 Front view of $M_a[Fe(CN)_6]$ (M_aFe PBAs) local models with different Ma elements after inserting an NH_4^+ ion. And $M_a = (a)$ Co, (b) Cu, (c) Fe, (d) Mg, (e) Mn, (f) Ni, (g) V, (h) Zn.

Fig. S4 Charge Density Difference (CDD) of different $NH_4 \cdot M_aFe$ PBAs local models. $M_a = (a)$ Co, (b) Cu, (c) Fe, (d) Mg, (e) Mn, (f) Ni, (g) V, (h) Zn.

Fig. S5 The electron state density of M_a Fe PBAs model with 4 and 5 NH_4^+ inserted. $M_a = Cu$, Fe, Mg, Mn, Ni, V, Zn.

Voltage	1	2	3	4	5	6	7	8	Potential range
(V)	$\mathbf{NH_{4}^{+}}$	$\mathbf{NH_{4}^{+}}$	$\mathrm{NH_{4}^{+}}$	$\mathrm{NH_4^+}$	$\mathrm{NH_{4}^{+}}$	$\mathrm{NH_4^+}$	$\mathrm{NH_{4}^{+}}$	$\mathbf{NH_{4}^{+}}$	(V)
Co	4.19	4.24	4.00	3.99	2.57	2.66	2.63	2.94	1.67
Cu	4.62	5.14	4.90	4.88	4.40	4.35	4.27	4.20	0.94
Fe	4.05	4.09	3.83	3.81	3.52	3.48	3.19	3.07	1.02
Mg	5.07	4.89	4.62	4.54	4.29	4.22	4.00	3.90	1.17
Mn	3.64	3.52	3.22	3.14	2.88	2.82	2.45	2.44	1.20
Ni	4.70	4.53	4.16	4.21	4.04	4.05	4.16	4.06	0.66
V	3.69	3.61	3.34	3.26	2.93	2.81	2.45	2.28	1.41
Zn	5.07	4.86	4.63	4.52	4.31	4.19	4.03	3.87	1.19

Tab. S2 Nominal battery voltage for M_a Fe PBAs models with different amounts of NH_4^+ inserted. $M_a = Co, Cu, Fe, Mg, Mn, Ni, V, Zn.$

Electrode	Potential range (V)	Specific capacity (mAh·g ⁻¹) @ current density (mA·g ⁻¹)	Ref.
CuHCF	1.24	55@500	[1]
NiHCF	0.6	38@500	[2]
N-CuHCF	0.5	53.1@1000	[3]
MnHCF	1.0	104@100	[4]
$K_{0.9}Cu_{1.3}Fe(CN)_6$	1.0	60@50	[5]
NaFe[Fe(CN) ₆]	0.6	60@250	[6]
$Na_{1.45}Fe[Fe(CN)_6]_{0.93}$	1.0	75@250	[7]
$(\mathrm{NH}_4)_2\mathrm{Cu}[\mathrm{Fe}(\mathrm{CN})_6]$	0.8	77.8@150	[2]
K-V-Fe PBAs	1.2	93.4@2000	[8]
Na _{0.73} Ni[Fe(CN) ₆] _{0.88}	0.6	92.5@100	[9]
Ni ₂ Fe(CN) ₆	0.4	57.4@556	[10]

Tab. S3 Voltage ranges and specific capacities @ current densities of reported PBAs used as electrode materials for aqueous ammonium ion batteries.

References

1 C. D. Wessells, M. T. Mcdowell, S. V. Peddada, M. Pasta, R. A. Huggins and Y. Cui, ACS Nano, 2012, 6, 1688-1694.

2 X. Wu, Y. Qi, J. J. Hong, Z. Li, A. S. Hernandez and X. Ji, Angew. Chem., Int. Ed., 2017, 56, 13026-13030.

3 X. Zhang, M. Xia, T. Liu, N. Peng, H. Yu, R. Zheng, L. Zhang, M. Shui and J. Shu, Chem. Eng. J., 2021, 421, 127767.

4 H. Zhang, Y. Tian, W. Wang, Z. Jian and W. Chen, Angew. Chem., Int. Ed., 2022, 61, e202204351.

5 C. D. Wessells, S. V. Peddada, M. T. Mcdowell, R. A. Huggins and Y. Cui, J. Electrochem. Soc., 2012, 159, A98-A103.

6 C. Li, W. Yan, S. Liang, P. Wang, J. Wang, L. Fu, Y. Zhu, Y. Chen, Y.Wu and W. Huang, Nanoscale Horiz., 2019, 4, 991-998.

7 C. Li, D. Zhang, F. Ma, T. Ma, J. Wang, Y. Chen, Y. Zhu, L. Fu, Y. Wu and W. Huang, ChemSusChem, 2019, 12, 3732-3736.

8 J. J. Xing, X. L. Fu, S. D. Guan, Y. Zhang, M. Lei and Z. J. Peng, Appl. Surf. Sci., 2021, 543, 148843.

9 W. X. Hou, C. Yan, P. Shao, K. Dai and J. Yang, Nanoscale, 2022, 14, 8501.

10 H. X. Yu, J. X. Xu, C. C. Deng, M. T. Xia, X. K. Zhang, J. Shu and Z. B. Wang,

ACS Appl. Energy Mater. 2021, 4, 9594-9599.