Electronic Supplementary Information

for

Chiroptical activity of benzannulated Nheterocyclic carbene rhenium(I) tricarbonyl halide complexes: towards efficient circularly polarized luminescence emitters

Valerio Giuso, a Christophe Gourlaouen, Mathias Delporte--Pebay, Thomas Groizard,

Nicholas Vantuyne,^d Jeanne Crassous^{*},^c Chantal Daniel,^{*,b} and Matteo Mauro^{*,a}

^a Université de Strasbourg & CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS UMR 7504), F-67034 Strasbourg, France.

E-mail: mauro@unistra.fr

^b Laboratoire de Chimie Quantique Université de Strasbourg CNRS UMR7177, Institut Le Bel 4 Rue Blaise

Pascal, 67000 Strasbourg, France.

E-mail : <u>c.daniel@unistra.fr</u>

° Université de Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France.

E-mail: jeanne.crassous@univ-rennes1.fr

^d Aix-Marseille Université, CNRS Centrale Marseille, iSm2, 13284 Marseille, France.

Table of Content: Design of enantiomerically pure circularly polarized luminescent (CPL) Rhenium(I) emitters from an in-depth interpretation of the chiroptical properties by means of jointly (chiroptical) photophysical measurements and state-of-the-art theoretical investigation.

Figure TOC

Supplementary Data: Theory

$A_{\rm Re}$ -2Br C_{Re}-**2I** $C_{\rm Re}$ -2Br A_{Re}-**2**I С_{Re}-**3Вr** A_{Re}-3Br A_{Re}-3I С_{Re}-3I C_{Re}-4Br A_{Re}-4Br A_{Re}-**4I** C_{Re}-5Br A_{Re}-5I A_{Re}-5Br C_{Re}-5I A_{Re}-6Br C_{Re}-6Br A_{Re}-6I C_{Re}-61

Figure S1. Electronic ground state DFT optimized structures of the A_{Re} and C_{Re} enantiomers of complexes **3–6Br** and **3–6I**.

S3

Figure S2. Kohn-Sham FMOs of the investigated complexes **2Br** and **2I** in their A_{Re} stereochemistry, computed at their electronic ground state.

Figure S3. Kohn-Sham FMOs of the investigated complexes **3Br** and **3I** in their A_{Re} stereochemistry, computed at their electronic ground state.

Figure S4. Kohn-Sham FMOs of the investigated complexes **4Br** and **4I** in their A_{Re} stereochemistry, computed at their electronic ground state.

Figure S5. Kohn-Sham FMOs of the investigated complexes **5Br** and **5I** in their A_{Re} stereochemistry, computed at their electronic ground state.

Figure S6. Kohn-Sham FMOs of the investigated complexes **6Br** and **6I** in their A_{Re} stereochemistry, computed at their electronic ground state.

Figure S7. Calculated ECD spectra with SOC of the C_{Re} and A_{Re} enantiomers of complexes **1–4Br**.

Figure S8. TD-DFT absorption spectra of A_{Re} (bottom) and C_{Re} (top) enantiomers of **1Br** and **1I** with and without SOC perturbation.

Figure S9. TD-DFT absorption spectra of A_{Re} (bottom) and C_{Re} (top) enantiomers of **2Br** and **2I** with and without SOC perturbation.

Figure S10. TD-DFT absorption spectra of A_{Re} (bottom) and C_{Re} (top) enantiomers of **3Br** and **3I** with and without SOC perturbation.

Figure S11. TD-DFT absorption spectra of A_{Re} (bottom) and C_{Re} (top) enantiomers of **4Br** and **4I** with and without SOC perturbation.

Figure S12. TD-DFT absorption spectra of A_{Re} (bottom) and C_{Re} (top) enantiomers of **5Br** and **5I** with and without SOC perturbation.

Figure S13. TD-DFT absorption spectra of A_{Re} (bottom) and C_{Re} (top) enantiomers of **6Br** and **6I** with and without SOC perturbation.

Figure S14. Character of the low-lying electronic transitions (without SOC at FC) obtained by means of TheoDORE analysis for complex **2Br** and **2I**.

Figure S15. Character of the low-lying electronic transitions (without SOC at FC) obtained by means of TheoDORE analysis for complex **3Br** and **4I**.

Figure S16. Character of the low-lying electronic transitions (without SOC at FC) obtained by means of TheoDORE analysis for complex **4Br** and **4I**.

Figure S17. Character of the low-lying electronic transitions (without SOC at FC) obtained by means of TheoDORE analysis for complex **5Br** and **5I**.

Figure S18. Character of the low-lying electronic transitions (without SOC at FC) obtained by means of TheoDORE analysis for complex **6Br** and **6I**.

Figure S19. Calculated ECD spectra of the C_{Re} and A_{Re} enantiomers of **2I** and **2Br** without SOC.

Figure S20. Calculated ECD spectra of the C_{Re} and A_{Re} enantiomers of **3I** and **3Br** without SOC.

Figure S21. Calculated ECD spectra of the C_{Re} and A_{Re} enantiomers of **4I** and **4Br** without SOC.

Figure S22. Calculated ECD spectra of the C_{Re} and A_{Re} enantiomers of **5I** and **5Br** without SOC.

Figure S23. Calculated ECD spectra of the C_{Re} and A_{Re} enantiomers of **6I** and **6Br** without SOC.

Table S1. Transition energies, absorption wavelengths and oscillator strengths associated to the low-lying singlet, triplet and "spin-orbit" states of the bromide complexes

1Br

Singlet no.	(at FC) E/eV	f	nm	Triplet (no.	at FC) E/eV	« Spin- no.	Orbit » sta Energy	ates (eV)	f	nm
S1 S2 S3 S4 S5 S6 S7 S8 S10 S11 S12 S13	2.7033 2.8871 3.2552 3.2956 3.3330 3.4668 3.7728 3.8085 3.8571 3.9387 3.9773 4.0133 4.2001	0.28174E-01 0.60724E-01 0.12080E-01 0.42054E-01 0.17056E-01 0.17661E-01 0.17337E-01 0.32137E-01 0.73499E-01 0.87911E-02 0.20757E-02 0.44298E-02 0.12511E-01	459 381 376 372 358 329 326 321 315 312 309 295	T1 T2 T3 T4 T5 T6 T7 T8 T9 T10	2.3049 2.7313 2.8050 3.1664 3.2772 3.3912 3.4298 3.6157 3.6534 3.7277	E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11	2.2936 2.2937 2.2950 2.5976 2.6449 2.6459 2.6899 2.8328 2.8609 2.8652 2.9265	0.3179E-04 0.7362E-04 0.5900E-03 0.1611E-01 0.1314E-04 0.4803E-03 0.1549E-01 0.1138E-01 0.2234E-04 0.1242E-02 0.4150E-01	541 540 477 469 569 461 438 433 433 424	T1 T1 LC _{NHC} T1 55%S1/27%T2 T2/T3 26%T2/22%T3/21%S2 35%T3/30%S1/16%T2 T3/T2 T3/T2 68%S2/15%T3

2Br

Singlet	(at FC)			Triplet (at FC)	« Spin-	Orbit » sta	ates		
no.	E/eV	f	nm	no.	E/eV	no.	Energy	(eV)	f	nm
S1	2.6670	0.38789E-01	465	T1	2.2193	E1	2.2117	0.1394E-04	561	T1
S2	2.8924	0.70427E-01	429	T2	2.7233	E2	2.2117	0.1923E-04	561	T1 LC
S3	3.1916	0.22727E-01	389	T3	2.7945	E3	2.2125	0.3930E-03	560	T1
S4	3.2861	0.34676E-01	377	14	3.1128	E4	2.5800	0.2506E-01	481	64%S1/ 18%T2
S5	3.31/2	0.28832E-02	374	15	3.2711	E5	2.6326	0.1478E-04	471	T2/T3
S6	3.5147	0.14111E-01	353	16	3.3845	E6	2.6337	0.1726E-03	471	T2/T3
S7	3.7405	0.34092E-01	331	T7	3.4549	F7	2 6749	0 1593E-01	463	36%T2/19%S2/15%T3
S8	3.7858	0.25493E-01	328	T8	3.6110	E8	2 8135	0 1364E-01	441	40%T3/26%S1
S9	3.8900	0.59801E-01	319	Т9	3.6702	FO	2 8506	0.1500E-04	435	T3/T2
S10	3.9348	0.73228E-02	315	T10	3.7207		2.0000		404	T0/T2 T0/T0
S11	3.9713	0.52316E-02	312				2.0009	0.0320E-03	434	13/12 600/ 60/10 0/ T 0
S12	4.0199	0.13180E-02	308			EII	2.9225	0.4853E-01	424	69%52/12%13

3Br

Singlet	(at FC)			Triplet	t (at FC)	« Spir	-Orbit » sta	ates			
no.	E/eV	f	nm	no.	E/eV	no.	Energy	(eV)	f	nm	
S1	2.7441	0.32879E-01	452	T1	2.3239	E1	2.3145	0.2218E-04	536	T1	
S2	2.9404	0.50754E-01	422	T2	2.7851	E2	2.3145	0.4138E-04	536	T1	LC
S3 S4 S5 S6 S7 S8	3.3250 3.3802 3.3916 3.5808 3.8450 3.9177	0.28584E-01 0.56562E-02 0.46323E-01 0.54521E-02 0.24483E-01 0.40831E-01	373 366 366 346 322 316	T3 T4 T5 T6 T7 T8	2.8695 3.2090 3.3373 3.4841 3.5534 3.6469	E3 E4 E5 E6 E7	2.3153 2.6519 2.6996 2.7007 2.7321	0.4102E-03 0.2080E-01 0.2320E-04 0.2971E-03 0.1288E-01	536 468 459 459 459	T1 62%S1 T2/T3 T2/T3 40%T2	/18%T2 /20%S2/12%T3
S9	3.9899	0.45053E-01	311	T9	3.7097	E8	2.8977	0.1104E-01	428	56%T3	/25%S1/12%T3
S10 S11	4.0482 4.0709	0.72426E-02 0.41250E-02	306 305	T10	3.7921	E9 E10 E11	2.9257 2.9757	0.1305E-04 0.1079E-02 0.3496E-01	424 424 417	T3/T2 69%S2	//11%T3
S12	4.0848	0.94937E-02	304								

4Br

Singlet no.	(at FC) E/eV	f	nm	Triplet no.	(at FC) E/eV	« Spir no.	n-Orbit » sta Energy	ates (eV)	f	nm
S1	2.7422	0.29263E-01	 452	 T1	2.3194	 E1	2.3091	0.2927E-04	537	T1
S2	2.9115	0.64154E-01	426	T2	2.7654	E2	2.3092	0.7043E-04	537	T1 LC
S3 S4 S5 S6 S7 S8	3.3203 3.3579 3.3816 3.5446 3.7870 3.8918	0.30934E-01 0.75449E-02 0.38938E-01 0.24549E-01 0.20605E-01 0.15831E-01	373 369 367 350 327 319	T3 T4 T5 T6 T7 T8	2.8488 3.2259 3.3133 3.4511 3.4920 3.6374	E3 E4 E5 E6 E7	2.3102 2.6345 2.6802 2.6814 2.7238 25%T2/2	0.5639E-03 0.1648E-01 0.1253E-04 0.5271E-03 0.1797E-01 23%S2/22%T3/1	537 471 463 462 455 11%S1	NHC 54%S1 / 30%T2 T2/T3 T2/T3
S9	3.9128	0.63133E-01	317	T9	3.6997	E8	2.8729	0.1323E-01	432	35%T3/30%S1/14%T2
S10 S11 S12	3.9475 4.0120 4.0472	0.18609E-01 0.46424E-02 0.27278E-02	314 309 306	110 T11 T12 T13	3.7418 3.8499 3.8761 3.9887	E9 E10 E11	2.8729 2.9075 2.9593	0.1826E-04 0.1172E-02 0.4164E-01	432 426 419	T3/T2 T3/T2 65%S2/19%T3

5Br

Singlet no.	(at FC) E/eV	f	nm	Triplet no.	(at FC) E/eV	« Spin no.	Orbit » state: Energy (e\	s /)	f	nm	
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13	2.7180 2.9233 3.1979 3.2706 3.3422 3.4187 3.7065 3.7561 3.8681 3.9090 3.9145 3.9478 4.1108	0.35515E-01 0.50285E-01 0.10942E-01 0.28103E-01 0.19657E-01 0.57769E-02 0.31449E-01 0.65473E-02 0.31678E-01 0.15982E-01 0.55322E-02 0.19364	456 424 388 379 371 363 335 331 321 317 317 317 314 302	T1 T2 T3 T4 T5 T6 T7 T8 T9 T10	2.3106 2.7722 2.8559 3.1474 3.2552 3.3360 3.3767 3.5665 3.6407 3.6793	E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11	2.3004 0 2.3005 0. 2.3012 0 2.6310 0. 2.6876 0. 2.6888 0. 2.7155 0. 2.8832 0 2.9064 0. 2.9092 0 2.9551 0	.2423E-04 8995E-04 .4611E-03 2356E-01 1080E-04 6153E-03 1244E-01 .1060E-01 4203E-04 .8776E-03 .3407E-01	539 539 471 461 461 457 430 427 426 420	T1 T1 C _{NHC} T1 65%S1/17%T2 T2/T3 57%T2/19%S2 60%T3/23%S1 T3/T2 T3/T2 68%S2	

6Br

Singlet	(at FC)			Triplet (at FC)		« Spin-Orbit » states		ates			
no.	E/eV	f	nm	no.	E/eV	no.	Energy	(eV)	f	nm	
S1	2.6710	0.45718E-01	464	T1	2.2339	E1	2.2267	0.1535E-04	557	T1	
S2	2.9158	0.44769E-01	425	T2	2.7563	E2	2.2267	0.3831E-04	557	T1 LC	
S3	3.1590	0.10716E-01	392	T3	2.8293	E3	2.2272	0.2538E-03	557	T1	
S4	3.2083	0.36543E-01	386	Τ4	3.0954	E4	2.6032	0.3434E-01	476	75%S1/17%T3	
S5	3.3185	0.46936E-02	374	T5	3.2442	E5	2 6710	0 2188E-04	464	T2/T3	
S6	3.4310	0.58450E-02	361	T6	3.2673	E6	2 6722	0 3516E-03	464	T2/T3	
S7	3.6574	0.49906E-01	339	T7	3.3774	E7	2 6067	0.00102 00	460	72% 72/18% 92	
S8	3.7092	0.22142E-01	334	T8	3.5424		2.0307	0.9100E-02	400	60% T2/20% C1	
S9	3.8575	0.15137E-01	321	Т9	3.6103		2.0455	0.1100E-01	430	09%13/20%31 To/To	
S10	3.8686	0.39222E-01	320	T10	3.6524	E9	2.0732	0.9092E-04	432	13/12	
S11	3.8890	0.63000E-02	319	-		E10	2.8749	0.4311E-03	431	13/12	
S12	3.9017	0.11755E-01	318			E11	2.9276	0.3001E-01	424	67%S2/10%T2	
S13	4.0863	0.18399	303								

Table S2. Transition energies (in eV), absorption wavelengths (in nm) and oscillator strengths associated to the low-lying singlet, triplet and "spin-orbit" states of the iodide complexes

11

Singlet no.	(at FC) E/eV	f	nm	Triplet no.	(at FC) E/eV	« Spin no.	-Orbit » states Energy (eV)	f	nm
S1	2.5853	0.12442E-01	480	T1	2.2852	E1	2.2425 0.1669E-04	553	T1
S2	2.6900	0.25971E-01	461	T2	2.5775	F2	2.2428 0.1212E-03	553	T1 IC
S3	3.0735	0.80436E-01	403	T3	2.6201	E3	2.2500 0.1678E-02	551	T1
S4	3.1831	0.19646E-01	390	T4	3.0704	E4	2 3591 0 7133E-02	526	43%S1/36%T2
S5 S6	3.2763 3.3174	0.11341E-01 0.48022E-03	378 374	T5 T6	3.2300 3.2717	E5	2.3974 0.1591E-04	517	T2/T3
S7	3.5727	0.33365E-02	347	Т7	3.2895	E0	2.3975 0.8540E-04	517	29%T3/28%S2/12%T2
S8	3.6060	0.97819E-01	344	Т8	3.3910	E7	2.4274 0.8269E-02	511	
S9	3.6747	0.13986E-01	337	T9	3.4951	E8	2.6894 0.6893E-02	461	26%S1/19%13/26%12
S10	3.7755	0.76985E-02	328	T10	3.6034	E9	2.7176 0.2219E-04	456	T3/T2
S11 S12 S13	3.9253 3.9678	0.23095E-02 0.51719E-03 0.54347E-02	316 312 306			E10 E11	2.7420 0.4379E-02 2.7647 0.1393E-01	452 448	53%S2/15%T3

21

Singlet	(at FC)			Triplet	(at FC)	« Spin	-Orbit » sta	ates			
no.	E/eV	f	nm	no.	E/eV	no.	Energy	(eV)	f	nm	
S1	2.5754	0.19643E-01	481	T1	2.2057	E1	2.1838	0.2019E-04	568	T1	
S2	2.7054	0.30026E-01	458	T2	2.5805	E2	2.1842	0.1390E-03	567	T1	
S3	2.9823	0.78558E-01	416	Т3	2.6188	E3	2.1867	0.7517E-03	567	T1	NHC
S4	3.2135	0.18130E-01	386	T4	3.0150	F4	2 3646	0 1101E-01	524	46%5	1/27% T2/14% T3
S5	3.3142	0.15737E-03	374	T5	3.2679		0 2700	0 1705E 04	501	T0/T2	1/21/012/14/010
S6	3.3382	0.74748E-02	371	T6	3.2846		2.3700	0.17956-04	521	TO/TO	
S 7	3 5475	0 87130E-02	350	T7	3 3105		2.3791	0.1543E-03	521	12/13	- / /
S8	3 6021	0.92587E-01	344	T8	3 3839	E/	2.4135	0.1043E-01	514	31%5	2/49%13
80	2 6621		220	то	2 4716	E8	2.6793	0.1120E-01	463	30%S	51/24%T3
39	3.0021	0.20000000-01	339	19	3.4710	E9	2.7157	0.1848E-04	457	T3/T2	
S10	3.7859	0.81705E-02	328	T10	3.6092	F10	2 7395	0.5557E-02	453	T3/T2	
S11	3.9087	0.24951E-02	317			E14	0 7670	0.0007 2 02	440	EE0/ C	0/1 /0/ T0/1 00/ T0
S12	4.0163	0.21037E-01	309				2.7070	0.10512-01	440	55%5	2/14%12/10%13
S13	4.0181	0.48344F-02	309			E12	2.9528	0.5667E-01	420	/1%S	3/14
S14	4.0633	0.12532E-01	305								

31

Singlet	(at FC)			Triplet	t (at FC)	« Spir	n-Orbit » sta	ates			
no.	E/eV	f	nm	no.	E/eV	no.	Energy	(eV)	f	nm	
S1	2.6436	0.14210E-01	469	T1	2.3103	E1	2.2802	0.1515E-04	544	T1	
S2	2.7489	0.21904E-01	451	T2	2.6367	E2	2.2806	0.1336E-03	544	T1	LC
S3	3.1091 3.2954	0.85478E-01	399 376	T3 ⊤₄	2.6852 3 1041	E3	2.2845	0.9543E-03	543	T1	
S5	3.3797	0.51897E-03	367	T5	3.3292	E4 E5	2.4230	0.8155E-02	512	43%S1/	30%T2/13%T3
S6	3.3933	0.23720E-02	365	T6	3.3346	E6	2.4449	0.3247E-04	507	T2/T3	
S7 S8	3.6721 3.7072	0.11896E-01 0.84091E-01	338 334	T7 T8	3.3868 3.5014	E7	2.4746	0.7621E-02	501	30%S2/	24%T3/22%T2
S9	3.7687	0.20998E-01	329	Т9	3.5910	E0	2./322 2.7810	0.1101E-04	4 50 446	20%51/ T3/T2	21%13/20%12
S10	3.8959	0.74455E-02	318	T10	3.6869	E10	2.7019	0.4683E-02	440	40%T3/	16%\$1/19%T2
S11	3.9948	0.56572E-02	310			F11	2.0004	0.4000E 02	440	53%\$2/	18%T2/11%T3
S12	4.0711	0.45516E-03	305				2.0221			00/002	10/012/11/010

41

Singlet no.	(at FC) E/eV	f	nm	Triplet no.	(at FC) E/eV	« Spir no.	n-Orbit » sta Energy	ates (eV)	f	nm	
S1 S2 S 3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13	2.6299 2.7281 3.1298 3.2629 3.3587 3.3594 3.6137 3.6653 3.6989 3.7926 3.9330 4.0362 4.0693	0.12884E-01 0.25380E-01 0.99268E-01 0.13428E-01 0.72330E-02 0.79693E-02 0.47383E-01 0.42954E-01 0.15080E-01 0.87655E-02 0.25548E-02 0.56936E-03 0.11581E-02	471 454 396 380 369 343 338 335 327 315 307 305	T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T 12 T13 T14 T15	2.3082 2.6210 2.6613 3.1354 3.2953 3.3144 3.3525 3.4183 3.5368 3.6302 3.7436 3.7986 3.8717 3.9217 3.9279	E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E10 E11	2.2729 2.2733 2.2784 2.4037 2.4327 2.4329 2.4621 2.7338 2.7598 2.7598 2.7848 2.8039	0.4010E-04 0.1346E-03 0.1332E-02 0.7438E-02 0.1723E-04 0.8696E-04 0.8376E-02 0.7175E-02 0.1884E-04 0.4469E-02 0.1368E-01	546 545 544 510 510 504 454 449 445 442	T1 T1 44%S T2/T3 T3/T2 30%S 25%S T3/T2 38%T3 53%S	LC _{NHC} 1/34T2 2/29%T3/17%T2 1/22%T3/24%T2 3/18%S1/15%T2 2/15%T3/12%T2
				115	0.5275						

51

S14 4.0017 0.14943E-01

S16 4 0855 0 10514 304

3.9675 0.21218E-01

0.62828E-01

313

310

308

S13

S15 4.0276

Singlet no.	(at FC) E/eV	f	nm	Triplet no.	(at FC) E/eV	« Spin no.	-Orbit » sta Energy	ates (eV)	f	nm	
S1 S2	2.6039 2.7237	0.15242E-01 0.26188E-01	476 455	T1 T2	2.2894 2.6055	E1 E2	2.2554 2.2557	0.4125E-04 0.1104E-03	550 550	Т1 T1 LC _{NHC}	•
S3 S4	3.0638	0.57029E-01	405 305	T3	2.6655	E3	2.2599	0.1324E-02	550	T1	
34 95	3 2/28	0.23303E-01	383	14 T5	3.0400	E4	2.3920	0.8647E-02	518	43%S1/27%T2/11%T	3
55 S6	3 2775	0.3207 TE-02	378	15 T6	3 2326	E5	2.4230	0.2083E-04	512	T2/T3	
S7	3 5311	0.20682E-01	351	T7	3 2606	E6	2.4233	0.3266E-04	512	T2/T3	
S8	3.6213	0.51886E-01	342	T8	3 4375	E7	2.4498	0.8623E-02	506	27%S2/19%T3/19%T	2
S9	3.6296	0.22081E-01	342	T9	3.4515	Eð	2.7229	0.7710E-02	455	25%\$1/20%13/20%1	2
S10	3.7594	0.10237E-01	330	T10	3.5614	E9	2./53/	0.1786E-04	450	13/12 409/ T0/149/ C1/059/ T	· ^
S11	3.8596	0.78062E-02	321			E10 E11	2.7741	0.4000E-02	447	42%13/14%31/23%1	2 '2
S12	3.8972	0.39701E-02	318				2.1922	0.3128E-03	444 103	52%52/10%12/12%1 T/	3
S13	4.0454	0.45502E-03	306			E12	2.3022	0.3120E-03	423	T4/T5	
S14 4	.0539 0	.20729E-02	306			E10	2 9407	0.6459E-02	422	T4/S5/S4	
						E15	2.9483	0.1377E-01	421	S4/T5	
						E16	3.0299	0.3930E-01	409	S3/S4	
	61										
Singlet	(at FC)			Triplet	(at FC)	« Spin	-Orbit » sta	ates			
no.	E/eV	f	nm	no.	È E/eV	no.	Energy	(eV)	f	nm	
S1	2.5894	0.26224E-01	479	 T1	2.2166	E1	2.1972	0.4195E-04	564	T1	
S2	2.7264	0.29413E-01	455	T2	2.6093	E2	2.1974	0.1202E-03	564	T1 LC	
S3	2.9681	0.37766E-01	418	Т3	2.6613	F٦	2 1080	0 7175E-03	564	NHC T1	
S4	3.1122	0.25374E-01	398	Τ4	2.9765	F4	2.1000	0.1407E-00	518	48%S1/17%T2/15%T	3
S5	3.2456	0.43302E-02	382	T5	3.1802	E5	2 4129	0.3895E-04	514	T2/T3	Ŭ
S6	3.2868	0.64097E-02	377	T6	3.2178	F6	2.4132	0.9752E-04	514	T2/T3	
S7	3.4674	0.24554E-01	358	T7	3.2428	E7	2.4404	0.1087E-01	508	31%S2/29%T2/14%T	3
S8	3.5846	0.26824E-01	346	T8	3.3958	E8	2.7025	0.1264E-01	459	31%S1/44%T3	-
S9	3.6152	0.51525E-01	343	Т9	3.4155	E9	2.7453	0.1730E-04	452	T3/T2	
S10	3.7397	0.12793E-01	332	T10	3.5260	E10	2.7618	0.5041E-02	449	T3/T2	
511	3.8063	0.72114E-02	326			E11	2.7825	0.1484E-01	446	50%S2/16%T2	
S12	3.8671	0.86229E-02	321			E10	2 0121	0 4710E 02	106	T4	

E12

E13

E14

E15

E16

2.9121 0.4719E-03

2.9137 0.8947E-03

2.9196 0.5006E-02

2.9371 0.2062E-01

2.9622 0.2077E-01

426

426

425

422

419

Τ4

T4

T4/S5

S3/S4

S4/S3

Table S3. Reduced rotatory strengths R (in 10^{-40} esu·cm·erg/G), magnetic transition dipole *x*, *y*, *z* components (in a.u.) and associated singlet excited states computed for A_{Re} enantiomers of compounds **1CI**, **1Br**, **1I**, **2-6Br**, **2-6I** in toluene.

Compound		R [10⁻⁴⁰ esu⋅cm⋅erg/G]	m _x	m _y	mz	State character
	S1	-27.214	0.23909E-03	0.92552E-02	-0.55842	MLCT/XLCT/LC
(<i>A</i> _{Re})-2Br	S2	5.8439	0.14827	0.16157E-01	0.24256E-01	XLCT/MLCT/LC
	S3	-11.214	-0.93033E-01	0.19787	0.39595	LC/XLCT
	S1	-13.508	0.26795E-01	-0.40650E-02	0.38887	XLCT/MLCT
(<i>A</i> _{Re})-2I	S2	-7.2975	-0.71211E-01	0.52285E-01	-0.14500E-01	XLCT
	S3	-48.235	-0.12898E-01	0.11697	0.5891	LC/XLCT
	S1	-24.246	-0.72515E-01	-0.62280E-01	0.52119	MLCT/XLCT
(<i>A</i> _{Re})-4Br	S2	4.3188	-0.14919	-0.55053E-02	-0.66724E-01	XLC T/MLCT
	S3	-12.062	-0.17127	0.13728	0.33013	LC/MLCT/XLCT
	S1	-9.7919	0.24633E-02	0.40937E-01	-0.34507	XLCT
(<i>A</i> _{Re})-4I	S2	-5.5389	-0.80131E-01	0.48016E-01	-0.26942E-01	XLCT
	S3	-57.311	-0.63313E-01	0.10903	0.65304	LC/XLCT
	S1	-32.220	0.30033E-01	0.28022E-01	-0.62238	MLCT/XLCT/LC
(<i>A</i> _{Re})-3Br	S2	6.7995	0.13802	0.67069E-01	0.14979	XLCT/MLCT/LC
	S3	-13.161	0.23341E-01	-0.14938	-0.43144	LC/XLCT
	S1	-16.575	0.14587E-02	-0.63192E-01	0.41348	XLCT/MLCT
(<i>A</i> _{Re})-3I	S2	-4.9473	-0.69111E-01	0.69618E-02	-0.12743	XLCT
	S3	-60.205	-0.40834E-02	0.12091	0.72458	LC/XLCT
	S1	-49.504	0.72997E-01	0.30163E-01	0.64075	MLCT/LC/XLCT
(<i>A</i> _{Re})-6Br	S2	-6.8419	0.92757E-02	0.96773E-01	0.28537	XLCT/MLCT
	S3	-10.792	-0.20123E-01	-0.20588E-01	0.30590	LC/MLCT/XLCT
	S1	-35.592	0.75243E-01	-0.36832E-01	0.46106	XLCT/MLCT/LC
(A _{Re})-6I	S2	-18.856	0.38951E-01	-0.20574E-01	-0.32426	XLC T/MLCT
	S3	-28.858	0.11921	0.13981	0.57613	LC/XLC T
	S1	-38.070	0.41413E-01	-0.51204E-01	0.53347	MLCT/XLCT/LC
(<i>A</i> _{Re})-5Br	S2	0.0165	0.34158E-01	0.96667E-01	0.21003	XLCT/MLCT/LC
	S3	-1.2786	0.27632E-01	-0.54504E-01	0.34044	MLCT/LC/XLCT
	S1	-18.556	0.42132E-01	-0.54003E-01	0.34653	XLCT/MLCT
(A Re)-5I	S2	-7.3229	-0.14159E-01	0.29005E-01	0.15810	XLCT
	S3	-31.732	0.85297E-01	0.16197	0.54946	LC/XLCT
	S1	-22.10	0.39572-01	83508-04	55656	MLCT/LLCT/XLCT
(<i>A</i> _{Re})-1Cl	S2	11.58	14537	16592-01	.35022-02	MLCT/LLCT/XLCT
	S3	1.7081	49069-01	.10619	.37424	MLCT/LC/LLCT
	S1	-23.710	-0.19345E-02	0.31654E-01	-0.49701	MLCT/XLCT
(<i>A</i> _{Re})-1Br	S2	4.9509	-0.16679	0.62757E-02	-0.12887E-01	XLCT/MLCT
	S3	-2.7830	-0.32392E-01	0.82010E-01	0.96020E-01	LC/XLCT/MLCT
	S1	-10.063	-0.28080E-01	0.25982E-01	-0.32881	XLCT/MLCT
(<i>A</i> _{Re})-1I	S2	-6.3573	-0.73000E-01	0.53333E-01	-0.19423E-01	XLCT
	S3	-48.222	0.99895E-02	0.11753	0.56242	LC/XLCT

Table S4. Transition energies (E in eV), absorption wavelengths (λ in nm) and oscillator strengths (f) associated to the low-lying singlet, triplet and "spin-orbit" states of the Re(I) complexes **1-6Br** in acetone.

ESI for Chiroptical activity of benzannulated N-heterocyclic carbene rhenium(I) tricarbonyl halide complexes

					11	Br					
	Scalar Sin	glet States		Sci	alar triplet Sta	ites	Spin-Orbit States				
State	E	λ	f	State	E	λ	State	E	λ	f	Nature
S1	2.938	422	1.27E-01	T1	2.358	526	E1	2.355	527	1.13E-05	99% T1
S2	3.280	378	8.42E-02	T2	3.021	410	E2	2.355	527	2.82E-05	99% T1
S3	3.539	350	2.07E-02	T3	3.136	395	E3	2.355	526	1.54E-04	99% T1
S4	3.559	348	6.46E-02	T4	3.385	366	E4	2.893	429	1.05E-02	83% S1 12% T3
S5	3.612	343	3.60E-03	T5	3.524	352	E5	2.962	419	1.73E-04	71% T2 21% T3
S6	3.827	324	6.68E-02	Т6	3.616	343	E6	2.965	418	7.93E-04	71% T2 22% T3
S7	3.975	312	1.72E-02	Τ7	3.725	333	E7	2.986	415	8.12E-03	83% T2 7% S2
S8	4.025	308	2.31E-02	Т8	3.824	324	E8	3.132	396	1.97E-02	79% T3 14% S1
S9	4.175	297	4.37E-02	Т9	3.870	320	E9	3.142	395	1.60E-04	66% T3 24% T2 5% T4
S10	4.201	295	3.48E-02	T10	3.912	317	E10	3.142	395	4.53E-04	65% T3 25% T2 6% T4

	2Br										
	Scalar Sin	glet States		Scalar triplet States			Spin-Orbit States				
State	E	λ	f	State	E	λ	State	E	λ	f	Nature
S1	2.844	436	1.37E-01	T1	2.258	549	E1	2.255	550	1.17E-05	99% T1
S2	3.281	378	8.04E-02	T2	2.958	419	E2	2.255	550	1.25E-05	99% T1
S3	3.488	355	6.14E-02	T3	3.127	397	E3	2.255	550	9.45E-05	99% T1
S4	3.516	353	1.64E-02	T4	3.344	371	E4	2.818	440	1.26E-01	92% S1 5% T3
S5	3.597	345	1.39E-04	T5	3.517	353	E5	2.922	424	1.25E-04	83% T2 13% T3
S6	3.742	331	9.61E-02	Т6	3.533	351	E6	2.924	424	1.98E-04	84% T2 12% T3
S7	3.950	314	2.61E-02	T7	3.727	333	E7	2.935	422	3.40E-03	93% T2
S8	4.026	308	1.01E-02	Т8	3.797	327	E8	3.100	400	7.22E-04	71% T3 14% T2 9% T4
S9	4.156	298	3.41E-02	Т9	3.882	319	E9	3.102	400	1.90E-03	73% T3 12% T2 10% T4
S10	4.224	294	2.72E-02	T10	3.920	316	E10	3.102	400	8.22E-03	83% T3 5% S1

3Br											
	Scalar Sin	glet States		Sc	alar triplet Sta	ites	Spin-Orbit States				
State	E	λ	f	State	E	λ	State	E	λ	f	Nature
S1	2.958	419	1.27E-01	T1	2.373	522	E1	2.370	523	1.35E-05	99% T1
S2	3.326	373	7.07E-02	T2	3.017	411	E2	2.370	523	1.62E-05	99% T1
S3	3.598	345	7.45E-02	Т3	3.190	389	E3	2.370	523	1.16E-04	99% T1
S4	3.602	344	4.64E-02	T4	3.421	362	E4	2.918	425	1.10E-01	86% S1 9% T3
S5	3.627	342	3.15E-03	T5	3.550	349	E5	2.973	417	3.82E-04	81% T2 13% T3
S6	3.893	318	4.92E-02	Т6	3.631	341	E6	2.975	417	3.27E-04	83% T2 13% T3
S7	4.030	308	3.06E-03	T7	3.749	331	E7	2.987	415	5.29E-03	90% T2 5% S2
S8	4.147	299	4.97E-02	Т8	3.827	324	E8	3.176	390	4.89E-04	72% T3 15% T2 8% T4
S9	4.243	292	1.01E-01	Т9	3.895	318	E9	3.177	390	1.58E-03	74% T3 13% T2 7% T4
S10	4.281	290	3.30E-01	T10	3.961	313	E10	3.178	390	1.41E-02	81% T3 9% S1

	4Br	
Scalar Singlet States	Scalar triplet States	Spin-Orbit States

ESI for Chiroptical activity of benzannulated N-heterocyclic carbene rhenium(I) tricarbonyl halide complexes

State	E	λ	f	State	E	λ	State	E	λ	f	Nature
S1	2.994	414	1.43E-01	T1	2.379	521	E1	2.375	522	1.26E-05	99% T1
S2	3.321	373	8.66E-02	T2	3.058	405	E2	2.375	522	2.74E-05	99% T1
S3	3.595	345	2.75E-02	T3	3.172	391	E3	2.376	522	1.43E-04	99% T1
S4	3.603	344	5.99E-02	T4	3.426	362	E4	2.946	421	1.15E-01	80% S1 14% T3
S5	3.656	339	3.04E-03	Т5	3.561	348	E5	2.999	413	3.18E-04	72% T2 22% T3
S6	3.846	322	5.48E-02	Т6	3.681	337	E6	3.002	413	9.79E-04	73% T2 22% T3
S7	4.004	310	1.87E-02	Τ7	3.740	331	E7	3.022	410	8.66E-03	85% T2 8% S2
S8	4.045	307	2.46E-02	Т8	3.845	322	E8	3.173	391	2.42E-02	78% T3 16% S1
S9	4.199	295	4.64E-02	Т9	3.868	321	E9	3.179	390	3.40E-04	66% T3 25% T2 6% T4
S10	4.243	292	3.51E-02	T10	3.932	315	E10	3.179	390	9.67E-04	66% T3 24% T2 6% T4

5Br											
	Scalar Sin	glet States		Sc	alar triplet Sta	ates	Spin-Orbit States				
State	E	λ	f	State	E	λ	State	E	λ	f	Nature
S1	2.922	424	1.24E-01	T1	2.359	526	E1	2.356	526	1.56E-05	99% T1
S2	3.299	376	5.61E-02	T2	3.015	411	E2	2.356	526	2.59E-05	99% T1
S3	3.425	362	6.69E-02	T3	3.183	390	E3	2.356	526	9.99E-05	99% T1
S4	3.525	352	1.72E-02	T4	3.391	366	E4	2.886	430	1.09E-01	88% S1 7% T3
S5	3.594	345	2.36E-03	T5	3.447	360	E5	2.969	418	1.15E-04	80% T2 13% T3
S6	3.739	332	1.12E-01	Т6	3.454	359	E6	2.972	417	5.43E-04	81% T2 13% T3
S7	3.878	320	1.18E-02	Τ7	3.623	342	E7	2.983	416	4.04E-03	90% T2 6% S2
S8	4.003	310	7.14E-03	Т8	3.687	336	E8	3.168	391	1.23E-02	81% T3 10% S1
S9	4.097	303	2.78E-01	Т9	3.772	329	E9	3.169	391	5.06E-05	68% T3 17% T2 6% T4
S10	4.117	301	8.22E-02	T10	3.839	323	E10	3.170	391	5.53E-04	71% T3 16% T2 6% T4

6Br											
	Scalar Sin	glet States		Scalar triplet States			Spin-Orbit States				
State	E	λ	f	State	E	λ	State	E	λ	f	Nature
S1	2.813	441	1.10E-01	T1	2.813	441	E1	2.272	546	2.51E-05	99% T1
S2	3.290	377	1.53E-02	T2	3.290	377	E2	2.272	546	1.17E-05	99% T1
S3	3.317	374	1.16E-01	T3	3.317	374	E3	2.272	546	6.69E-05	99% T1
S4	3.521	352	1.53E-02	T4	3.521	352	E4	2.792	444	1.04E-01	95% S1
S5	3.578	347	1.95E-02	T5	3.578	347	E5	2.913	426	4.95E-05	91% T2 6% T3
S6	3.622	342	1.31E-01	Т6	3.622	342	E6	2.914	425	2.62E-04	91% T2 5% T3
S7	3.842	323	1.81E-02	T7	3.842	323	E7	2.918	425	1.74E-03	95% T2
S8	3.862	321	1.89E-02	Т8	3.862	321	E8	3.138	395	5.65E-05	74% T3 11% T5 6% T2
S9	4.063	305	2.48E-02	Т9	4.063	305	E9	3.141	395	1.00E-03	75% T3 11% T5 7% T2
S10	4.070	305	3.53E-01	T10	4.070	305	E10	3.146	394	5.63E-03	84% T3

Table S5. Reduced rotatory strengths R (in 10^{-40} esu·cm·erg/G), magnetic transition dipole *x*, *y*, *z* components (in a.u.) and associated singlet excited states computed for A_{Re} enantiomers of compounds **1-6Br** in acetone.

Compound		R [10⁻⁴⁰ esu⋅cm⋅erg/G]	mx	my	mz	State character
	S1	-29.9	4.45E-02	-2.44E-01	6.45E-01	LC/MLCT
(A _{Re})-1Br	S2	23.5	-2.59E-01	-5.79E-02	1.47E-01	MLCT/XLCT/LLCT
	S3	-8.4	1.20E-01	-1.16E-01	2.46E-01	LC/MLCT/XLCT
	S1	-57.6	9.91E-03	2.19E-01	-7.08E-01	LC/MLCT
(A _{Re})-2Br	S2	31.5	2.57E-01	1.74E-02	-1.49E-01	MLCT/XLCT/LLCT
	S3	5.2	-1.75E-02	6.29E-02	-5.73E-01	LC
	S1	-73.6	-4.98E-02	2.76E-01	-7.52E-01	LC/MLCT/LLCT
(A _{Re})-3Br	S2	36.1	2.42E-01	1.17E-01	-5.56E-02	MLCT/XLCT/LLCT
	S3	14.8	1.69E-02	-2.26E-02	4.79E-01	LC/XLCT/MLCT
	S1	-63.1	1.42E-01	-2.67E-01	6.91E-01	LC/MLCT/LLCT
(A _{Re})-4Br	S2	33.3	-2.27E-01	-1.97E-01	8.53E-02	MLCT/XLCT/LLCT
	S3	-2.9	9.49E-02	-3.61E-02	3.15E-01	LC/MLCT/LLCT
	S1	-72.1	1.34E-01	-2.18E-01	7.01E-01	LC/MLCT/LLCT
(<i>A</i> _{Re})-5Br	S2	22.3	-1.32E-01	-1.48E-01	-9.22E-02	MLCT/XLCT/LLCT
	S3	-16.7	9.68E-02	-6.06E-02	8.01E-01	LC/MLCT/LLCT
	S1	-63.8	-1.57E-01	1.76E-01	-7.20E-01	LC/LLCT/MLCT
(A _{Re})-6Br	S2	4.6	-1.55E-02	1.71E-01	-2.75E-01	LC/MLCT/LLCT
	S3	-22.0	1.49E-01	-2.46E-02	6.77E-01	LC/MLCT/LLCT

Table S6. Transition energies (E_{abs} in [eV]) and character at Franck-Condon (FC), emission wavelengths (E_{em} in [eV] and λ_{em} [nm]), character at the triplet optimized structure of the lowest triplet states of complexes **1CI**, **1Br**, **1I**, **2Br**, **3Br**, **4Br**, **5Br**, **6Br** as A_{Re} enantiomers computed in acetone.

	1CI	1Br	11	2Br	3Br	4Br	5Br	6Br
E _{abs}	2.365	2.358	2.348	2.258	2.373	2.379	2.359	2.274
Character	LC							
E _{em}	1.731	1.730	1.724	1.640	1.743	1.746	1.725	1.642
λ_{em}	716	716	719	756	711	710	719	755
Character	LC							

Supplementary Data: synthetic protocols

Scheme S1. Schematic synthetic pathway employed for the preparation of pro-carbenic ligands L1H–L6H.

Scheme S2. Schematic synthetic pathway employed for the preparation of fac-[Re(L1–L6)(CO)₃X] complexes.

Scheme S3. Schematic synthetic pathway employed for the preparation of *fac*-[Re(L1)(CO)₃I] complex (1I).

Synthesis of ligands L1H-L6H

2-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexafluorophosphate (L1H)

To a 30 mm glass microwave vial were added 2-aminopyridine (1.00 g, 10.68 mmol, 1.0 eq.), paraformaldehyde (478.1 mg, 15.92 mmol, 1.5 eq.) and acetonitrile 8 mL. The suspension was kept under stirring and heated at 80°C under microwave irradiation (60 W) for 30 minutes. To the resulting yellow solution were added picolinaldehyde (1025 μ L, 10.62 mmol, 1.0 eq.) and 5 mL of a 3M HCl solution in acetonitrile (2.5 mL HCl 37% in 10 mL acetonitrile). The mixture was kept under stirring and heated at 100°C microwave irradiation (60 W) for 60 minutes. The resulting biphasic system was transferred in a round bottom flask with the aid of MeOH and evaporated to dryness under reduced pressure. The residue was dissolved in 20 mL of water and a 5 mL of a

saturated aqueous solution of KPF₆ were added dropwise under heavy stirring. The ligand precipitated as KPF₆ salt and was collected on a G4 glass frit and washed with acetone (5 mL), Et₂O:acetone 2:3 (20 mL) and E₂O (5 mL). Pure ligand **L1H** was obtained as an off-white crystalline powder (3.30 g, 9.68 mmol, yield 91%).

¹**H NMR** (500 MHz, 298 K, DMSO-*d*₆) δ : 10.53 (1H, d, J^{4}_{H3-H1} 1.1, H³), 8.94 (1H, s, H¹), 8.72 (1H, dd, J_{o} 4.8, J_{m} 1.4, H¹⁴), 8.58 (1H, dd, J_{o} 7.0, J_{m} 1.0, H⁸), 8.26 (1H, ddd, J_{o} 8.7, J_{o} 7.5, J_{m} 1.4, H¹²), 8.17 (1H, d, J_{o} 8.7, H¹¹), 7.90 (1H, dd, J_{o} 9.3, J_{m} 1.1, H⁵), 7.70 (1H, ddd, J_{o} 7.5, J_{o} 4.8, J_{m} 0.9, H¹³), 7.33 (1H, ddd, J_{o} 9.3, J_{o} 6.7, J_{m} 1.0, H⁶), 7.26 (1H, td, J_{o} 7.0, J_{o} 6.7, J_{m} 1.1, H⁷). ¹**H NMR** (500 MHz, 298 K, acetone- d_{6}) δ : 10.39 (1H, d, J^{4}_{H3-H1} 1.1, H³), 8.91 (1H, s, H¹), 8.74 (1H, ddd, J_{o} 4.8, J_{m} 0.9, H¹⁴), 8.70 (1H, dd, J_{o} 7.0, J_{m} 1.0, H⁸), 8.29 (1H, ddd, J_{o} 8.2, J_{o} 7.5, J_{m} 1.8, H¹²), 8.17 (1H, dt, J_{o} 8.2, J_{m} 0.9, H¹¹), 7.99 (1H, dd, J_{o} 9.3, J_{m} 1.2, H⁵), 7.75 (1H, ddd, J_{o} 7.5, J_{o} 4.8, J_{m} 0.9, H¹³), 7.44 (1H, ddd, J_{o} 9.3, J_{o} 6.8, J_{m} 1.0, H⁶), 7.36 (1H, td, J_{o} 7.0, J_{o} 6.8, J_{m} 1.2, H⁷). ¹³**C NMR** APT (125.7 MHz, 298 K, DMSO-d₆) δ : 149.98 (C¹⁴), 146.97 (C¹⁰), 141.25 (C¹²), 130.57 (C^{8a}), 126.42 (C¹³), 125.87 (C⁶), 125.40 (C³), 124.83 (C⁸), 119.06, 119.03 (C^{5.7}), 115.52 (C¹¹), 110.43 (C¹). ¹³**C NMR** APT (125.7 MHz, 298 K, acetone-d₆) δ : 150.59 (C¹⁴), 147.67 (C¹⁰), 141.62 (C¹²), 131.89 (C^{8a}), 126.97 (C¹³), 126.56 (C⁶), 125.20 (C^{3.8}), 119.90, 119.54 (C^{5.7}), 115.78 (C¹¹), 111.02 (C¹).

1-methyl-2-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexafluorophosphate (L2H)

To a 30 mm glass microwave vial were added 2-aminopyridine (1.20 g, 12.76 mmol, 1.0 eq.), paraformaldehyde (553.4 mg, 18.42 mmol, 1.4 eq.) and acetonitrile 3 mL. The suspension was kept under stirring and heated at 80°C under microwave irradiation (60 W) for 30 minutes. To the resulting yellow solution were added acetylpyridine (1440 μ L, 12.75 mmol, 1.0 eq.) and 5 mL of a 3M HCl solution in acetonitrile (2.5 mL HCl 37% in 10 mL acetonitrile). The mixture was kept under stirring and heated at 100°C microwave irradiation (60 W) for 60 minutes. The resulting red solution was transferred in a round bottom flask with the aid of MeOH and evaporated

to dryness under reduced pressure. The residue was dissolved in 20 mL of water and 5 mL of a saturated aqueous solution of KPF₆ were added dropwise under heavy stirring. The ligand precipitated as KPF₆ salt and was collected on a G4 glass frit and washed with water (3x5 mL) and E₂O (2x10 mL). Pure ligand **L2H** was obtained as an off-white crystalline powder (3.09 g, 8.70 mmol, yield 68%).

¹**H NMR** (400 MHz, 298 K, DMSO-d₆) δ : 10.16 (1H, s, H³), 8.79 (1H, ddd, J_o 4.9, J_m 1.9, J_p 0.8, H¹⁴), 8.52 (1H, d, J_o 6.7, H⁸), 8.26 (1H, td, J_o 7.9, J_o 7.8, J_m 1.9, H¹²), 8.03 (1H, d, J_o 8.5, H¹¹), 7.96 (1H, dt, J_o 8.1, J_m 0.9, J_p 0.9, H⁵), 7.79 (1H, ddd, J_o 7.6, J_o 4.9, J_m 1.0, H¹³), 7.31-7.19 (2H, m, H^{6,7}), 2.71 (3H, s, CH₃¹). ¹³**C NMR** APT (101 MHz, 298 K, DMSO-d₆) δ : 149.88 (C¹⁴), 146.83 (C¹⁰), 140.53 (C¹²), 126.92 (C^{8a}), 126.20 (C¹³), 125.95 (C³), 123.86, 123.57 (C^{6,8}), 121.43 (C¹),

120.33 (C⁵), 118.61 (C⁷), 118.29 (C¹¹), 9.28 (CH₃¹). ESI-MS calcd for $C_{13}H_{12}N_3$: 210.1026. Found: 210.1035.

2-(6-methylpyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexafluorophosphate (L3H)

To a 30 mm glass microwave vial were added 6-methyl-2-aminopyridine (2.01 g, 18.58 mmol, 1.0 eq.), paraformaldehyde (1.001 g, 33.36 mmol, 1.8 eq.) and acetonitrile 7 mL. The suspension was kept under stirring and heated at 80°C under microwave irradiation (60 W) for 30 minutes. To the resulting yellow solution were added picolinaldehyde (1933 μ L, 18.57 mmol, 1.0 eq.) and 7 mL of a 3M HCl solution in acetonitrile (2.5 mL HCl 37% in 10 mL acetonitrile). The mixture was kept under stirring and heated at 100°C microwave irradiation (60 W) for 60 minutes. The resulting brown solution was transferred in a round bottom flask with the aid of MeOH and evaporated to dryness under reduced pressure. The residue was dissolved in 20 mL of

water and 5 mL of a saturated aqueous solution of KPF_6 were added dropwise under heavy stirring. The ligand precipitated as KPF_6 salt and was collected on a G4 glass frit and washed with water (2x10 mL) and E₂O (15 mL). Pure ligand **L3H** was obtained as a white crystalline powder (4.92 g, 13.8 mmol, yield 75%).

¹**H NMR** (400 MHz, 298 K, DMSO-d₆) δ : 10.53 (1H, d, J^{4}_{H3-H1} 1.1, H³), 8.97 (1H, s, H¹), 8.60 (1H, dd, J_{o} 7.0, J_{m} 1.0, H⁸), 8.16 (1H, t, J_{o} 8.0, J_{o} 7.8, H¹²), 8.01 (1H, d, J_{o} 8.0, H¹¹), 7.92 (1H, d, J_{o} 9.3, H⁵), 7.59 (1H, d, J_{o} 7.8, H¹³), 7.34 (1H, ddd, J_{o} 9.3, J_{o} 6.8, J_{m} 1.0, H⁶), 7.27 (1H, td, J_{o} 7.0, J_{o} 6.8, J_{m} 1.2, H⁷), 2.63 (1H, s, CH₃¹⁴).

¹³**C NMR** APT (101 MHz, 298 K, DMSO-d₆) δ : 158.89 (C¹⁴), 145.86 (C¹⁰), 140.89 (C¹²), 130.06 (C^{8a}), 125.39, 125.37 (C^{6,13}), 124.92 (C³), 124.46 (C⁸), 118.59, 118.52 (C^{5,7}), 111.92 (C¹¹), 109.96 (C¹), 23.71 (CH₃¹⁴).

ESI-MS calcd for C₁₃H₁₂N₃: 210.1026. Found: 210.1032. Found: N, 12.04; C, 43.60; H, 3.40. Calc. for C₁₃H₁₂N₃PF₆: N, 11.83; C, 43.96; H, 3.41%.

2-(4-methylpyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexafluorophosphate (L4H)

To a 30 mm glass microwave vial were added 4-methyl-2-aminopyridine (2.02 g, 18.68 mmol, 1.0 eq.), paraformaldehyde (1.009 g, 33.59 mmol, 1.8 eq.) and acetonitrile 5 mL. The suspension was kept under stirring and heated at 80°C under microwave irradiation (60 W) for 30 minutes. To the resulting yellow solution were added picolinaldehyde (1945 μ L, 18.68 mmol, 1.0 eq.) and 7 mL of a 3M HCl solution in acetonitrile (2.5 mL HCl 37% in 10 mL acetonitrile). The mixture was kept under stirring and heated at 100°C under microwave irradiation (60 W) for 60 minutes. The resulting brown solution was transferred in a round bottom flask with the aid of MeOH and

evaporated to dryness under reduced pressure. The residue was dissolved in 20 mL of water and 5 mL of a saturated aqueous solution of KPF_6 were added dropwise under heavy stirring. The ligand precipitated as KPF_6^- salt and was collected on a G4 glass frit and washed with water (3x5 mL) and E₂O (2x10 mL). Pure ligand **L4H** was obtained as an off-white crystalline powder (5.36 g, 15.0 mmol, yield 81%).

¹H NMR (400 MHz, 298 K, DMSO-d₆) δ : 10.55 (1H, d, J^{4}_{H3-H1} 1.1, H³), 8.97 (1H, s, H¹), 8.63-8.54 (2H, m, H^{8,14}), 8.11 (1H, s, H¹¹), 7.93 (1H, dd, J_{o} 9.3, J_{m} 1.1, H⁵), 7.57 (1H, d, J_{o} 5.3, H¹³), 7.34 (1H, ddd, J_{o} 9.3, J_{o} 6.8, J_{m} 1.1, H⁶), 7.27 (1H, td, J_{o} 6.9, J_{o} 6.8, J_{m} 1.1, H⁷), 2.53 (1H, s, CH₃¹²).

¹³C NMR APT (101 MHz, 298 K, DMSO-d₆) δ : 152.29 (C¹²), 149.08 (C¹⁴), 146.68 (C¹⁰), 130.07 (C^{8a}), 126.65 (C¹³), 125.41 (C⁶), 125.03 (C³), 124.46 (C⁸), 118.61, 118.57 (C^{5,7}), 115.49 (C¹¹), 109.93 (C¹), 20.77 (CH₃¹²).

ESI-MS calcd for $C_{13}H_{12}N_3$: 210.1026. Found: 210.1035.

Found: N, 12.08; C, 43.51; H, 3.41. Calc. for C₁₃H₁₂N₃PF₆: N, 11.83; C, 43.96; H, 3.41%.

2-(6-phenylpyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexafluorophosphate (L5H)

To a 30 mm glass microwave vial were added 6-phenyl-2-aminopyridine (304.5 mg, 1.79 mmol, 1.0 eq.), paraformaldehyde (82.8 mg, 2.76 mmol, 1.5 eq.) and acetonitrile 2 mL. The suspension was kept under stirring and heated at 80°C under microwave irradiation (60 W) for 30 minutes. To the resulting yellow solution were added picolinaldehyde (172 μ L, 1.79 mmol, 1.0 eq.) and 1.5 mL of a 3M HCl solution in acetonitrile (2.5 mL HCl 37% in 10 mL acetonitrile). The mixture was kept under stirring and heated at 100°C under microwave irradiation (60 W) for 60 minutes. The resulting brown solution was transferred in a round bottom flask with the aid of MeOH and evaporated to dryness under reduced pressure. The residue was dissolved in 10 mL of water and 3 mL of a saturated aqueous solution of KPF₆ were added dropwise under heavy stirring.

The ligand precipitated as KPF_6^- salt and was collected on a G4 glass frit and washed with MeOH (2 mL) and E₂O:MeOH 9:1 (10 mL). Three crops were recovered, and pure ligand **L5H** was obtained as an ochra crystalline powder (603.5 mg, 1.45 mmol, yield 81%).

¹H NMR (400 MHz, 298 K, DMSO-d₆) δ : 10.74 (1H, d, J^{4}_{H3-H1} 1.1, H³), 9.13 (1H, s, H¹), 8.63 (1H, dd, J_{o} 7.0, J_{m} 1.1, H⁸), 8.40-8.28 (4H, m, H^{12,13,Ph}), 8.17 (1H, dd, J_{o} 7.7, J_{m} 0.9, H¹¹), 7.95 (1H, dd, J_{o} 9.2, J_{m} 1.2, H⁵), 7.65-7.52 (3H, m, H^{Ph}), 7.36 (1H, ddd, J_{o} 9.2, J_{o} 6.8, J_{m} 1.1, H⁶), 7.30 (1H, td, J_{o} 7.0, J_{o} 6.8, J_{m} 1.2, H⁷).

¹³C NMR APT (101 MHz, 298 K, DMSO-d₆) δ : 155.99 (C¹⁴), 146.34 (C¹⁰), 141.92 (C¹²), 136.41 (C¹⁵), 130.43 (C^{Ph}), 130.14 (C^{8a}), 129.06 (C^{Ph}), 126.98 (C^{Ph}), 125.44 (C⁶), 125.16 (C³), 124.47 (C⁸), 121.82 (C¹³), 118.68 (C⁵), 118.66 (C⁷), 113.27 (C¹¹), 110.12 (C¹).

ESI-MS calcd for $C_{18}H_{14}N_3$: 272.1182. Found: 272.1185.

Found: N, 10.28; C, 51.57; H, 3.40. Calc. for C₁₈H₁₄N₃PF₆: N, 10.07; C, 51.81; H, 3.38%.

1-methyl-2-(6-phenylpyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexafluorophosphate (L6H)

To a 30 mm glass microwave vial were added 6-phenyl-2aminopyridine (723.7 mg, 4.25 mmol, 1.0 eq.), paraformaldehyde (193.9 mg, 6.46 mmol, 1.5 eq.) and acetonitrile 4 mL. The suspension was kept under stirring and heated at 80°C under microwave irradiation (60 W) for 30 minutes. To the resulting yellow solution were added acetylpyridine (480 μ L, 4.25 mmol, 1.0 eq.) and 2 mL of a 3M HCl solution in acetonitrile (2.5 mL HCl 37% in 10 mL acetonitrile). The mixture was kept under stirring and heated at 100°C under microwave irradiation (60 W) for 60 minutes. The resulting brown solution was transferred in a round bottom flask with the aid of MeOH and evaporated to dryness under reduced pressure. The residue was dissolved in 10 mL of water and 3 mL of a saturated aqueous solution of NaPF₆ were added dropwise under

heavy stirring. The ligand precipitated as KPF_{6} salt and was collected on a G4 glass frit and washed with E_2O :acetonitrile 6:1 (10 mL). Two crops were recovered, and **L6H** was obtained as colourless needles (1.19 g, 2.75 mmol, yield 65%).

¹H NMR (500 MHz, 298 K, DMSO-d₆) δ : 10.29 (1H, s, H³), 8.55 (1H, d, J_o 6.7, H⁸), 8.37-8.34 (2H, m, H^{12,11}), 8.23-8.18 (2H, m, H^{16,20}), 8.06 (1H, d, J_o 8.0, H⁵), 7.96-7.89 (1H, m, H¹³), 7.60-7.52 (3H, m, H^{17,18,19}), 7.32-7.22 (2H, m, H^{6,7}), 2.82 (3H, s, CH₃¹).

¹³C NMR APT (101 MHz, 298 K, DMSO-d₆) δ : 156.57 (C¹⁴), 146.71 (C¹⁰), 141.59 (C¹²), 136.64 (C¹⁵), 130.31, 129.11 (C^{17,18,19}), 127.03 (C³), 126.94 (C^{16,20}), 126.03 (C^{8a}), 123.89 (C⁶), 123.59 (C⁸), 122.14 (C¹¹), 121.37 (C¹), 118.65(C⁷), 118.36(C¹³), 118.32 (C⁵), 9.58 (CH₃¹).

ESI-MS calcd for $C_{19}H_{16}N_3$: 286.1339. Found: 286.1343. Found: N, 9.94; C, 51.73; H, 3.65. Calc. for $C_{19}H_{16}N_3PF_6$: N, 9.74; C, 52.91; H, 3.74%.

Synthesis of [*fac*-Re(L1–L6)(CO)₃X] complexes

Complex [Re^I(CO)₃(L1)CI] (1CI)

To a 30 mm glass microwave vial were added L1H (101.3 mg, 0.29 mmol, 1.0 eq.), Re(CO)₅Cl (129.6 mg, 0.36 mmol, 1.2 eq.), K₂CO₃ (115 mg) and xylene 7 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting brown xylene solution was decanted and discarded and the yellow precipitate washed with xylene (7 mL), Et₂O (2x7 mL) and pentane (4x7 mL). The yellow powder was dissolved in acetone (200 mL) and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 1 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried *in vacuo* overnight. Pure complex **1Cl** was obtained as a lemon-yellow

powder (110.5 mg, 0.221 mmol, yield 74%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 9.05 (1H, dt, J_o 5.5, J_m 1.2, H¹⁴), 8.65 (1H, s, H¹), 8.42-8.39 (2H, m, H^{8,12}), 8.38 (1H, dd, J_o 7.3, J_m 1.2, H¹¹), 7.70-7.61 (1H, m, H¹³), 7.63 (1H, d, J_o 9.6, H⁵), 7.12 (1H, ddd, J_o 9.6, J_o 6.5, J_m 1.0, H⁶), 7.02 (1H, ddd, J_o 7.5, J_o 6.5, J_m 1.2, H⁷).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 154.86 (C¹⁴), 143.16 (C¹²), 128.78 (C¹³), 125.93 (C⁶), 125.44 (C⁸), 119.47 (C⁵), 117.00 (C⁷), 115.06 (C¹¹), 108.82 (C¹).

ESI-MS calcd for $C_{15}H_9CIN_3NaO_3Re: 523.9773$. Found for ([M+Na]⁺): 523.9769. FT-ATR-IR (neat powder) v_{max}/cm^{-1} : 2013s, 1889br (C=O).

Complex [Re^I(CO)₃(L1)Br] (1Br)

To a 30 mm glass microwave vial were added **L1H** (106.9 mg, 0.31 mmol, 1.0 eq.), Re(CO)₅Br (106.2 mg, 0.26 mmol, 1.2 eq.), K₂CO₃ (119 mg) and xylene 7 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting brown xylene solution was decanted and discarded and the yellow precipitate washed with xylene (7 mL), Et₂O (2x5 mL) and pentane (4x7 mL). The yellow powder was dissolved in acetone (200 mL) and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 1 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried *in vacuo* overnight. Traces of ligand can be removed by washing the

powder with Et₂O:*i*PrOH 9:1 (4x5 mL). Pure complex **1Br** was obtained as a yellow powder (97.5 mg, 0.179 mmol, yield 68%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 9.06 (1H, ddd, J_o 5.6, J_m 1.6, J_p 1.0, H¹⁴), 8.67 (1H, s, H¹), 8.44-8.37 (2H, m, H^{8,12}), 8.36 (1H, dq, J_o 7.3, J_m 1.1, J_p 1.0, H¹¹), 7.67-7.62 (2H, m, H^{13,5}), 7.12 (1H, ddd, J_o 9.3, J_o 6.5, J_m 1.0, H⁶), 7.02 (1H, ddd, J_o 7.5, J_o 6.5, J_m 1.2, H⁷).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 154.90 (C¹⁴), 142.95 (C¹²), 133.26, 128.63 (C¹³), 125.68 (C⁶), 125.32 (C⁸), 119.34 (C⁵), 116.81 (C⁷), 114.97 (C¹¹), 108.73 (C¹).

FT-ATR-IR (neat powder) v_{max}/cm^{-1} : 2013s, 1889br (C=O).

Complex [Re^I(CO)₃(L1)I] (1I)

The ligand exchange was carried out on a fresh batch of complex **1CI** prepared on a scale of 112.4 mg of $\text{Re}(\text{CO})_5\text{CI}$ (0.31 mmol, 1.0 eq.) and purified up until the flash filtration step. The crude yellow powder was transferred to a 2-neck 100 mL round bottom flask under inert atmosphere with the aid of MeOH (50 mL), and to the yellow suspension was added solid AgPF₆ (100.3 mg, 0.39 mmol, 1.3 eq.) and left to stir for 10 minutes in the dark. Next, a fresh solution of NH₄I (238.6 mg, 1.64 mmol, 5.3 eq.) in MeOH (3 mL) was added dropwise and left to stir for 10 minutes. The pale-yellow suspension was evaporated under reduced pressure, washed with water (100 mL), and the precipitate recovered by filtration on a Kieselguhr plug. The filter cake

was washed with acetone (5x10 mL) and the cloudy yellow solution flash filtered on a burette packed with neutral Al_2O_3 (ca. 0.01 g Al_2O_3 / 1 mg of complex). A total of 20 mL of acetone were necessary to fully discharge the complex from the plug. The yellow solution was evaporated under reduced pressure. Pure complex **1I** was obtained as a yellow powder (104.3 mg, 0.176 mmol, yield 57%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 9.11 (1H, ddd, J_o 5.6, J_m 1.6, J_p 0.8, H¹⁴), 8.69 (1H, s, H¹), 8.43 (1H, dt, J_o 7.3, J_m 1.1 H⁸), 8.40-8.35 (1H, m, H¹²), 8.32 (1H, dq, J_o 7.4, J_m 1.1, H¹¹), 7.67-7.60 (2H, m, H^{13,5}), 7.13 (1H, ddd, J_o 9.4, J_o 6.5, J_m 1.1, H⁶), 7.03 (1H, ddd, J_o 7.3, J_o 6.5, J_m 1.2, H⁷).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 155.32 (C¹⁴), 142.95 (C¹²), 128.79 (C¹³), 125.65 (C⁶), 125.51 (C⁸), 119.51 (C⁵), 116.86 (C⁷), 115.23 (C¹¹), 108.96 (C¹).

ESI-MS calcd for C₁₅H₉N₃O₃Re: 466.0196. Found for ([M-I]⁺): 466.0216.

FT-ATR-IR (neat powder) v_{max}/cm^{-1} : 2012s, 1896br (C=O).

Found: N, 6.68; C, 31.02; H, 1.63. Calc. for ReIN₃C₁₅O₃H₉: N, 7.09; C, 30.41; H, 1.53.

Complex [Re^I(CO)₃(L2)Br] (2Br)

To a 30 mm glass microwave vial were added **L2H** (97.0 mg, 0.27 mmol, 1.0 eq.), Re(CO)₅Br (112.5 mg, 0.28 mmol, 1.2 eq.), K₂CO₃ (96 mg) and xylene 7 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting orange xylene solution was decanted and discarded and the yellow precipitate washed with xylene (7 mL), Et₂O (2x5 mL) and pentane (7 mL). The yellow powder was dissolved in acetone (450 mL) and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 1 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried *in vacuo* overnight. Traces of

ligand can be removed by washing the powder with Et_2O :acetone 7:3 (4x4 mL). Pure complex **2Br** was obtained as a yellow powder (125 mg, 0.223 mmol, yield 82%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 9.12 (1H, ddd, J_o 5.5, J_m 1.8, J_p 0.7, H¹⁴), 8.52 (1H, d, J_o 8.0, H⁸), 8.37 (1H, ddd, J_o 8.6, J_o 7.4, J_m 1.8, H¹²), 8.28 (1H, dt, J_o 7.4, J_m 1.1, H¹¹), 7.67-7.61 (2H, m, H^{13,5}), 7.01 (1H, dd, J_o 9.4, J_o 6.2, H⁶), 6.95 (1H, ddd, J_o 8.0, J_o 6.2, J_m 1.2, H⁷), 3.08 (1H, s, CH₃¹).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 155.75 (C¹⁴), 142.84 (C¹²), 128.55 (C¹³), 125.53 (C⁶), 123.50 (C⁸), 118.94 (C⁵), 116.95 (C⁷), 116.93 (C¹¹), 12.17 (CH₃¹).

ESI-MS calcd for C₁₆H₁₁BrN₃NaO₃Re: 581.9416. Found for ([M+Na]⁺): 581.9424.

FT-ATR-IR (neat powder) v_{max}/cm⁻¹: 2012s, 1888br, 1845br (C≡O).

Found: N, 7.31; C, 34.62; H, 2.02. Calc. for ReBrN₃C₁₆O₃H₁₁: N, 7.51; C, 34.35; H, 1.98.

Complex [Re^I(CO)₃(L3)Br] (3Br)

To a 30 mm glass microwave vial were added **L3H** (104.1 mg, 0.293 mmol, 1.0 eq.), Re(CO)₅Br (110.5 mg, 0.27 mmol, 1.2 eq.), K₂CO₃ (97 mg) and xylene 7 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting orange xylene solution was decanted and discarded and the yellow precipitate washed with xylene (7 mL), Et₂O (2x5 mL) and pentane (4x7 mL). The yellow powder was dissolved in acetone (250 mL) and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 5 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried *in vacuo* overnight. Traces of ligand were removed by washing the

powder with Et₂O:acetone 7:3 (4x4 mL). Pure complex **3Br** was obtained as a yellow powder (107.3 mg, 0.192 mmol, yield 71%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 8.62 (1H, d, J_o 7.8, H⁸), 8.48 (1H, dq, J_o 7.4, J_m 1.0, H¹¹), 8.22-8.20 (2H, m, H^{1,12}), 7.78-7.71 (1H, m, H¹³), 7.64 (1H, dt, J_o 9.4, J_m 1.2, H⁵), 7.12 (1H ddd, J_o 9.4, J_o 6.5, J_m 0.9, H⁶), 7.02 (1H, ddd, J_o 7.8, J_o 6.5, J_m 1.2, H⁷), 3.05 (1H, s, CH₃¹⁴).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 142.63 (C¹²), 128.54 (C¹³), 125.28 (C⁶), 124.93 (C⁸), 119.35 (C⁵), 116.73 (C⁷), 112.11 (C¹¹), 109.01 (C¹), 31.15 (CH₃¹⁴).

ESI-MS calcd for C₁₆H₁₁BrKN₃O₃Re: 597.9155. Found for ([M+K]⁺): 597.9165.

FT-ATR-IR (neat powder) v_{max}/cm^{-1} : 2013s, 1877br (C=O).

Found: N, 7.37; C, 34.32; H, 1.95. Calc. for ReBrN₃C₁₆O₃H₁₁: N, 7.51; C, 34.35; H, 1.98.

Complex [Re^I(CO)₃(L4)Br] (4Br)

To a 30 mm glass microwave vial were added **L4H** (104.5 mg, 0.29 mmol, 1.0 eq.), Re(CO)₅Br (108.0 mg, 0.27 mmol, 1.2 eq.), K₂CO₃ (97 mg) and xylene 7 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting orange xylene solution was decanted and discarded and the yellow precipitate washed with xylene (7 mL), Et₂O (2x5 mL) and pentane (2x7 mL). The yellow powder was dissolved in acetone (75 mL) and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 1 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried *in vacuo* overnight. Traces of

ligand were removed by washing the powder with Et_2O :acetone 7:3 (4x4 mL). Pure complex **4Br** was obtained as a yellow powder (144.2 mg, 0.258 mmol, yield 97%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 8.87 (1H, d, J_o 5.7, H¹⁴), 8.61 (1H, s, H¹), 8.35 (1H, dd, J_o 7.4, J_m 1.0, H⁸), 8.26 (1H, s, H¹¹), 7.61 (1H, dt, J_o 9.3, J_m 1.2, H⁵), 7.47 (1H ddd, J_o 5.7, J_m 1.6, $J^4_{H13-CH3}$ 0.8, H¹³), 7.11 (1H ddd, J_o 9.3, J_o 6.5, J_m 1.0, H⁶), 7.01 (1H, ddd, J_o 7.4, J_o 6.5, J_m 1.2, H⁷), 2.64 (1H, s, CH₃¹²).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 154.21 (C¹⁴), 128.80 (C¹³), 126.71 (C⁶), 125.44 (C⁸), 119.48 (C⁵), 116.91 (C⁷), 115.58 (C¹¹), 108.66 (C¹), 21.73 (CH₃¹²).

ESI-MS calcd for C₁₆H₁₁BrN₃NaO₃Re: 581.9416. Found for ([M+Na]⁺): 581.9426.

FT-ATR-IR (neat powder) v_{max}/cm^{-1} : 2013s, 1869br (C=O).

Found: N, 7.37; C, 34.32; H, 1.95. Calc. for ReBrN₃C₁₆O₃H₁₁: N, 7.51; C, 34.35; H, 1.98.

Complex [Re^I(CO)₃(L5)Br] (5Br)

To a 30 mm glass microwave vial were added L5H (151.8 mg, 0.36 mmol, 1.0 eq.), Re(CO)₅Br (167.3 mg, 0.41 mmol, 1.2 eq.), Li₂CO₃ (101 mg) and xylene 6 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting orange xylene solution was decanted and discarded and the yellow precipitate washed with benzene (10 mL) and pentane (2x10 mL). The yellow powder was suspended in chloroform (150 mL), filtered on a G4 glass frit to remove the unreacted ligand and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 10 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried in vacuo overnight. Pure complex 5Br was obtained as a yellow powder (67.8 mg, 0.109 mmol, yield 30%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 8.70 (1H, s, H¹), 8.42 (1H, dq, J_o 7.5, *J_m* 1.0, H⁸), 8.41-8.37 (2H, m, H^{12,13}), 7.68 (1H, dd, *J_o* 6.2, *J_m* 2.6, H¹¹), 7.65 (1H, dt, *J_o* 9.5, J_m 1.2, H⁵), 7.67-7.55 (5H, m, H^{Ph}), 7.12 (1H ddd, J_o 9.5, J_o 6.4, J_m 1.0, H⁶), 6.99 (1H, ddd, J_o 7.5, *J*_o 6.4, *J*_m 1.2, H⁷).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ: 142.16 (C¹²), 130.65 (C^{Ph}), 128.40, 125.31 (C^{Ph}), 125.05 (C^{Ph}), 119.06, 116.30, 113.48 (C¹¹), 108.90 (C¹). ESI-MS calcd for C₂₁H₁₃BrN₃NaO₃Re: 643.9573. Found for ([M+Na]⁺): 643.9612. FT-ATR-IR (neat powder) v_{max}/cm⁻¹: 2018s, 1926s, 1882br, 1866br (C=O).

Complex [Re^I(CO)₃(L6)Br] (6Br)

To a 30 mm glass microwave vial were added L6H (116.7 mg, 0.27 mmol, 1.0 eq.), Re(CO)₅Br (116.4 mg, 0.29 mmol, 1.2 eq.), Cs₂CO₃ (263 mg) and xylene 7 mL. The suspension was bubbled with Ar for 10 minutes, kept under stirring and heated at 130°C under microwave irradiation (60 W) for 4 hours. The resulting orange xylene solution was decanted and discarded and the yellow precipitate washed with xylene (5 mL) and Et₂O (4x5 mL). The yellow powder was suspended in chloroform (20 mL), filtered on a G4 glass frit to remove the unreacted ligand and flash filtered on a burette packed with neutral Al₂O₃ (ca. 0.1 g Al₂O₃ / 10 mg of complex). The resulting solution was quickly evaporated under reduced pressure and dried in vacuo overnight. Pure complex 6Br was obtained as a yellow powder (63.0 mg, 0.099 mmol, yield 37%).

¹H NMR (500 MHz, 298 K, acetone-d₆, inert atmosphere) δ : 8.44 (1H, dd, J_o 8.0, J_m 1.0, H⁸), 8.38 (1H, dd, J_o 8.9, J_o 7.4, H¹²), 8.35 (1H, dt, J_o 7.4, J_m 1.1, H¹¹), 7.72 (1H, dd, J_o 7.9, J_m 1.1, H¹³), 7.66-7.59 (6H, m, H^{5,Ph}), 7.02 (1H, ddd, J_o 9.2, J_o 6.4, J_m 1.0, H⁶), 6.93 (1H, ddd, J_o 8.0, J_o 6.4, J_m 1.2, H⁷), 3.07 (1H, s, CH₃¹).

¹³C NMR DEPT135 (125.7 MHz, 298 K, acetone-d₆, inert atmosphere) δ: 142.36 (C¹²), 131.14 (C^{Ph}), 128.47, 125.37 (C^{Ph}), 123.48 (C^{Ph}), 118.95, 116.68, 116.02 (C¹¹), 12.21 (CH₃¹).

ESI-MS calcd for C₂₂H₁₅BrN₃NaO₃Re: 657.9729. Found for ([M+Na]⁺): 657.9767.

FT-ATR-IR (neat powder) v_{max}/cm⁻¹: 2010s, 1911s, 1873br (C≡O).

Found: N, 6.35; C, 41.54; H, 2.50. Calc. for ReBrN₃C₂₂O₃H₁₅: N, 6.61; C, 41.58; H, 2.38.

Chiral chromatographic separation

Analytical chiral HPLC separation for compound 1CI

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

Preparative separation for compound 1CI:

• Sample preparation: About 82 mg of purified compound **1CI** are dissolved in 45 mL of dichloromethane.

• Chromatographic conditions: Chiralpak IC (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 320 nm.

• Injections (stacked): 33 times 1400 L, every 5.5 minutes.

• Fraction1: 40 mg of the first eluted enantiomer with *ee* >99.5%

Analytical chiral HPLC separation for compound 1Br

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 230 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

L	[]	/	/ 11 0 4 / 0	eapaony rabior	Enanaooolooanny	
ſ	7.25	1056	49.77	1.46		
	10.44	1066	50.23	2.54	1.74	8.18
ſ	Sum	2121	100.00			

Preparative separation for purified compound 1Br:

•Sample preparation: About 68 mg of purified compound **1Br** are dissolved in 36 mL of a mixture of dichloromethane and ethanol (85/15).

• Chromatographic conditions: Chiralpak IC (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 290 nm.

- Injections (stacked): 90 times 400 L, every 7.3 minutes.
- First fraction: 31 mg of the first eluted enantiomer with ee >99.5%

• Second fraction: 31 mg of the second eluted enantiomer with ee >98%

RT [min]	Area	Area%
7.23	10	0.74
10.39	1323	99.26
Sum	1333	100.00

Analytical chiral HPLC separation for compound 2Br

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 230 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.21	3446	49.33	1.44		
8.24	3540	50.67	1.79	1.24	3.14
Sum	6986	100.00			

Preparative separation for compound 2Br:

• Sample preparation: About 130 mg of purified compound **2Br** are dissolved in 205 mL of dichloromethane.

• Chromatographic conditions: Chiralpak IC (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 320 nm.

- Injections (stacked): 215 times 250 L, every 4 minutes.
- Fraction 1: 11 mg of the first eluted enantiomer with *ee* >97%

16957

100.00

• Fraction 2: 12 mg of the second eluted enantiomer with *ee* >94%

Sum

· Recovered starting material: 87 mg

Analytical chiral HPLC separation for compound 4Br

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
7.70	6008	49.94	1.61		
11.09	6022	50.06	2.76	1.71	7.81
Sum	12031	100.00			

Preparative separation for compound 4Br:

• Sample preparation: About 91 mg of purified compound **4Br** are dissolved in 18 mL of Dichloromethane.

- Chromatographic conditions: Chiralpak IF (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 320 nm.
- Injections (stacked): 45 times 400 L, every 4 minutes.

Collected fractions were placed in an ice bath and without light.
• Fraction1: 44 mg of the first eluted enantiomer with ee >99%

• Fraction 2: 43 mg of the second eluted enantiomer with ee >98.5%

Analytical chiral HPLC separation for compound 3Br

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

Preparative separation for compound 3Br:

7416 100.00

Sum

• Sample preparation: About 54 mg of purified compound **3Br** are dissolved in 70 mL of dichloromethane.

• Chromatographic conditions: Chiralpak IC (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 254 nm.

• Injections (stacked): 235 times 300 L, every 5 minutes.

• Fraction 1: 24 mg of the first eluted enantiomer with ee >98%

RT [min]	Area	Area%
5.44	8462	99.09
6.61	78	0.91
Sum	8540	100.00

• Fraction 2: 24 mg of the second eluted enantiomer with ee >95%

Analytical chiral HPLC separation for compound 6Br

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 230 nm and a polarimetric detector. The flow-rate is 1 mL/min.

Preparative separation for compound 6Br:

• Sample preparation: About 90 mg of purified compound **6Br** are dissolved in 33 mL of dichloromethane.

• Chromatographic conditions: Chiralpak IC (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 320 nm.

- Injections (stacked): 165 times 200 µL, every 3 minutes.
- Fraction 1: 38 mg, but racemized

• Fraction-2: 40 mg, but racemized

Kinetic of enantiomerization of 6Br in the mobile phase

About 0.1 mg of the first eluted peak in 1.5 mL of hexane / ethanol / dichloromethane (6/2/2) is collected after separation on a preparative column (250 x 10 mm). This solution is thermostated at 25°C in the autosampler, 10 L are taken and then injected on Chiralpak IC (6:2:2 heptane / ethanol / dichloromethane, 1 mL/min, UV 254 nm). The percentage decrease of the first eluted enantiomer is monitored.

Time (min)	% second eluted enantiomer	In ((%t-50%)/(%(t=0)-50%))
0	99.213	0.00000
27	92.789	-0.13988
40	90.438	-0.19639
54	87.28	-0.27770
67	84.96	-0.34195
81	81.908	-0.43330
94	80.122	-0.49090

k _{enantiomerisation} = 4.39.10⁻⁵ s⁻¹ (25°C, hexane / ethanol / dichloromethane 6:2:2) $\Delta G^{\neq} = 97.9 \text{ kJ.mol}^{-1}$ (25°C, hexane / ethanol / dichloromethane 6:2:2) $t_{1/2} = 2.2 \text{ hours}$ (25°C, hexane / ethanol / dichloromethane 6:2:2)

Analytical chiral HPLC separation for compound 5Br

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 230 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.46	3172	49.84	1.19		
8.56	3192	50.16	1.90	1.60	6.40
Sum	6364	100.00			

Preparative separation for compound 5Br:

• Sample preparation: About 55 mg of purified compound **5Br** are dissolved in 75 mL of dichloromethane.

• Chromatographic conditions: Chiralpak IC ($250 \times 10 \text{ mm}$), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 320 nm.

- Injections (stacked): 150 times 500 µL, every 6 minutes.
- Fraction1: 22 mg of the first eluted enantiomer with ee >96.5%

RT [min]	Area	Area%
6.23	9363	98.28
8.27	164	1.72
Sum	9527	100.00

• Fraction 2: 23 mg of the second eluted enantiomer with ee >94.5%

The enantiomerization barrier is around 110 kJ/mol at 25° C in hexane / ethanol / dichloromethane (60/20/20) : in 4 days, the ee decreases from 96.5% to 80%.

Analytical chiral HPLC separation for compound 11

• The sample is dissolved in dichloromethane, injected on the chiral column, and detected with an UV detector at 254 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
6.37	1179	51.49	1.16		
9.17	1111	48.51	2.11	1.82	7.69
Sum	2290	100.00			

Preparative separation for compound 11:

• Sample preparation: About 100 mg of purified compound **1I** are dissolved in 18 mL of dichloromethane.

• Chromatographic conditions: Chiralpak IC (250 x 10 mm), hexane / ethanol / dichloromethane (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 290 nm.

• Injections (stacked): 36 times 500 L, every 8.5 minutes.

• Fraction1: 24 mg of the first eluted enantiomer with *ee* >99%

RI[min]	Area	Area%
6.35	676	99.76
9.16	2	0.24
Sum	677	100.00

• Fraction-2: 16 mg of the second eluted enantiomer with ee >97%

Supplementary Data: photophysical characterization

Figure S24. Electronic absorption and photoluminescence spectra of compounds **1CI** (orange traces), **1Br** (magenta traces), and **1I** (purple traces) in acetone solution at a concentration of 2×10^{-5} M at room temperature (solid line) and 77 K (dashed line) in 2-MeTHF glassy matrix. Emission spectra were recorded upon excitation at $\lambda_{exc} = 360$ nm.

Figure S25. Electronic absorption and photoluminescence spectra of compounds **4Br** (red traces), **5Br** (green traces), and **6Br** (cyan traces) in acetone solution at a concentration of 2×10^{-5} M at room temperature (solid line) and 77 K (dashed line) in 2-MeTHF glassy matrix. Emission spectra were recorded upon excitation at $\lambda_{exc} = 360$ nm.

Figure S26. Photoluminescence spectra of compounds **1CI** (orange), **1Br** (magenta), **1I** (purple), **2Br** (black), **3Br** (blue), **4Br** (red), **5Br** (green), and **6Br** (cyan) in solid state as neat powder. Emission spectra were recorded upon excitation at $\lambda_{exc} = 360$ nm.

	Compound	λ_{em} [nm]	PLQY [%]	τ _{obs} [μs] (%)	$ar{ au}_{obs}$ [μs]	k_r^a $[10^4 \cdot s^{-1}]$	k_{nr}^b $[10^4 \cdot s^{-1}]$
-	1CI	611, 662, 722 <i>sh</i>	1	0.42 (82%) 1.29 (18%)	0.77	1.30	128
	1Br	617, 671, 735 <i>sh</i>	1	0.70 (93%) 6.33 (7%)	2.99	0.33	33.1
	11	615, 670, 740 <i>sh</i>	1	1.26 (36%) 0.23 (64%)	1.01	0.99	98.1
	2Br	632, 694, 767	1	1.10 (51%) 3.21 (49%)	2.66	0.38	37.2
	3Br	621, 669, 735 <i>sh</i>	1	0.42 (73%) 1.59 (27%)	1.10	0.91	89.9
	4Br	620, 670, 733 <i>sh</i>	1	1.27	-	0.79	78.3
	5Br	611, 670, 737 <i>sh</i>	1	0.49 (65%) 2.41 (35%)	1.90	0.53	52.2
-	6Br	623, 684, 756	1	1.09 (68%) 4.41 (32%)	3.26	0.31	30.3

Table S7. Photophysical properties of complexes 1–6 in the solid state as neat powder.

sh denotes a shoulder; ^a $k_r = PLQY/\tau$; ^b $k_{nr} = (1 - PLQY)/\tau$

Compound	Δε [M ⁻¹ cm ⁻¹] (λ, [nm])	g _{abs} (λ, [nm])	g _{lum} (λ, [nm])	g _{lum} / g _{abs}	BCPL
C _{Re} -1CI	-2.1 (355), +1.8 (410), +1.8 (435)	7.3×10 ⁻⁴ (435)	–3.9×10 ⁻³ (620)	-5.3	3.56×10-2
<i>C</i> _{Re} -1Br	-4.5 (355), +4.1 (412), +4.4 (438)	2.7×10 ⁻³ (438)	-4.4×10 ⁻³ (613)	-1.6	1.55×10 ⁻¹
<i>С</i> _{Re} -1І	-1.65 (358), +2.1 (414), +1.2 (453)	2.5×10⁻₃ (453)	–4.4×10⁻₃ (615)	-1.76	1.81×10 ⁻¹
C _{Re} -2Br	-2.1 (361), +2.4 (421), +2.5 (450)	1.1×10⁻₃ (450)	–3.0×10 ⁻³ (640)	-2.7	5.84×10 ⁻²
C _{Re} -3Br	-4.2 (354), +3.1 (413), +2.9 (442)	3.9×10 ⁻³ (442)	-3.3×10 ⁻³ - -1.1×10 ⁻³ (630) ^b	-0.3	1.22×10 ⁻¹
C _{Re} -4Br	-2.0 (346), +1.7 (406), +1.55 (430)	5.5×10 ⁻³ (430)	–3.2×10 ⁻³ (620)	-0.6	1.01×10 ⁻¹

Table S8. ECD, g_{abs} and g_{lum} data for the C_{Re} enantiomers of **1CI**, **1Br**, **1I** and **2-4Br** in dilute (10⁻⁵M) toluene solution at 298 K.^{*a*}

^a For CPL measurements, samples were degassed. ^b The measured signal was noisy.

Figure S27. Absorption dissymmetry factors g_{abs} (a-f), and emission dissymmetry factors g_{lum} (g-l) spectra recorded for enantioenriched C_{Re} and A_{Re} complexes **1Cl**, **1Br**, **1I** and **2Br**–**4Br**. Red (blue) color depicts first (second) eluted enantiomers (see "chiral chromatographic separation" section above).

Supplementary Figures

NMR Spectra

Figure S28 –NMR spectra for **L1H**: 1H, 13C APT, CPD, COSY, HBQC, HMBC in DMSO-d6 and 1H, APT, CPD, DEPT135, HBQC in acetone-d6.

Figure S30 – NMR spectra for L3H: 1H, 13C APT, HBQC in DMSO-d6.

Figure S31 –NMR spectra for L4H: 1H, 13C APT, HBQC in DMSO-d6.

Figure S32 –NMR spectra for L5H: 1H, 13C APT, HBQC in DMSO-d6.

Figure S33 –NMR spectra for L6H: 1H, 13C APT, COSY, HBQC, HMBC in DMSO-d6.

Figure S35 – NMR spectra for **1Br**: 1H, 13C DEPT135 in acetone-d6.

Figure S36 – NMR spectra for 1I: 1H, 13C DEPT135 in acetone-d6.

Figure S37 – NMR spectra for **2Br**: 1H, 13C DEPT135 in acetone-d6.

Figure S38 – NMR spectra for **3Br**: 1H, 13C DEPT135 in acetone-d6.

Figure S39 – NMR spectra for **4Br**: 1H, 13C DEPT135 in acetone-d6.

Figure S40 – NMR spectra for **5Br**: 1H, 13C DEPT135 in acetone-d6.
ESI for Chiroptical activity of benzannulated N-heterocyclic carbene rhenium(I) tricarbonyl halide complexes

Figure S41 –NMR spectra for **6Br**: 1H, 13C DEPT135 in acetone-d6.

ESI-MS spectra

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 210.103506 1 C13H12N3
 210.102574
 -4.4
 9.5
 ok even
 0.7
 1.4
 n.a.
 n.a.
 n.a.
 n.a.

Figure S42 – HR-ESI-MS Spectrum of L2H

 Meas. m/z # Ion Formula
 m/z err [ppm]
 Mean err [ppm]
 rdb
 N-Rule
 Conf
 mSigma
 Std
 I Std
 I VarNorm
 Std
 Mz Diff
 Std
 Comb
 Dev

 210.103316
 1 C13H12N3
 210.102574
 -3.5
 -4.1
 9.5
 ok even
 1.6
 3.5
 n.a.
 n.a.

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 210.103203 1 C13H12N3
 210.102574
 -3.0
 -4.7
 9.5
 ok even
 8.4
 14.5
 n.a.
 n.a.
 n.a.
 n.a.

Figure S44 – HR-ESI-MS Spectrum of L4H

 Meas. m/z # Ion Formula
 m/z err [ppm]
 Mean err [ppm]
 rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 272.118451 1 C18H14N3
 272.118224
 -0.8
 -0.8 13.5
 ok even
 3.7
 6.9
 n.a.
 n.a.
 n.a.
 n.a.

 Meas. m/z # Ion Formula
 m/z err [ppm]
 Mean err [ppm]
 rdb
 N-Rule
 e⁻ Conf
 mSigma
 Std
 I Std
 I Std
 M/z
 Diff
 Std
 Comb
 Dev

 286.134274
 1 C19H16N3
 286.133874
 -1.4
 -1.3
 13.5
 ok even
 7.4
 12.2
 n.a.
 n.a.

Figure S46 - HR-ESI-MS Spectrum of L6H

Figure S47- HR-ESI-MS Spectrum of 1CI

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 466.021574 1 C15H9N3O3Re 466.019596
 -4.2
 1112.1 14.0
 - odd
 9.4
 13.7
 n.a.
 n.a.
 n.a.
 n.a.

Figure S48 – HR-ESI-MS Spectrum of 1I

Figure S50 – HR-ESI-MS Spectrum of 3Br

FT-ATR-IR Spectra

Figure S54 – FT-ATR-IR spectra of **1I** (yellow), **1Br** (magenta), **1I** (purple) in the region of interest for C=O bonds, 2100-1700 cm⁻¹.

Figure S55 – FT-ATR-IR spectra of **2Br** (black), **3Br** (blue), **4Br** (red), **5Br** (green), and **6Br** (cyan) in the region of interest for C=O bonds, 2100-1700 cm⁻¹.

ESI for Chiroptical activity of benzannulated N-heterocyclic carbene rhenium(I) tricarbonyl halide complexes