Supporting Information Effects of strain and thickness on the mechanical, electronic, and optical properties of Cu₂Te

Hangjing Zhou^{1,#}, Lei Gao^{2,#,*}, Shihao He², Yong Zhang¹, Jianqun Geng¹, Jianchen Lu^{1,*},

Jinming Cai^{1,*}

¹ Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 China.

² Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.

[#] These authors contributed equally.

*Corresponding Authors: lgao@kust.edu.cn, jclu@kust.edu.cn, j.cai@kust.edu.cn.

Phase	Direction	Carrier	m*/m0	E1(eV)	$C_{2D}(J^*m^{-2})$	$\mu(10^3 \text{cm}^2 \text{V}^{-1} \text{S}^{-1})$
ζ-Cu ₂ Te	Х	h	0.18	4.27±0.02	80.04	1.32-1.34
ζ-Cu ₂ Te	У	h	0.15	5.35±0.01	83.85	1.06-1.07
		e	0.37	3.97±0.02	71.9	2.65-2.67
λ -Cu ₂ Te		h	0.38	5.35±0.02	82.9	1.64-1.66

Table S1 The Calculated Effective Mass (m*), Elastic Modulus (C2D), Deformation Potential Constant El, and Carrier Mobility (μ) of monolayer λ -Cu₂Te and ζ -Cu₂Te

Table S2 Theoretical Young's modulus Y (in N/m) and Poisson's ratio v of monolayer

ζ-Cu ₂ Te	Y(N/m)	V	λ -Cu ₂ Te	Y(N/m)	V
$\varepsilon_{bia} = -4\%$	96.56–121.17	0.38-0.48	$\varepsilon_{bia} = -4\%$	111.41	0.41
$\varepsilon_{bia} = -2\%$	98.06–110.63	0.38–0.44	$\epsilon_{bia} = -2\%$	102.04	0.42
$\epsilon_{bia}\!=\!0\%$	72.08-89.43	0.40–0.51	$\epsilon_{bia} = 0\%$	90.11	0.43
$\epsilon_{bia} = 2\%$	63.52-83.26	0.40–0.54	$\epsilon_{bia} = 2\%$	81.99	0.45
$\epsilon_{bia} = 4\%$	51.15-68.86	0.42–0.58	$\epsilon_{bia} = 4\%$	61.22	0.51
$\epsilon_x = -4\%$	93.36–102.23	0.39–0.43	$\epsilon_x = -4\%$	71.75–106.75	0.32-0.54
$\epsilon_x \!=\! -2\%$	95.14–101.67	0.38–0.42	$\epsilon_x = -2\%$	67.21–110.29	0.34-0.51
$\epsilon_x \!=\! 0\%$	82.63–99.22	0.37–0.47	$\epsilon_x = 0\%$	90.11	0.43
$\epsilon_x = 2\%$	70.061–97.32	0.36–0.54	$\epsilon_x = 2\%$	60.76–110.78	0.32-0.60
$\epsilon_x = 4\%$	62.48–95.401	0.38–0.59	$\epsilon_x = 4\%$	60.66–108.78	0.31-0.64
$\epsilon_y \!=\! -4\%$	82.96–114.56	0.34–0.51			
$\epsilon_y = -2\%$	82.72–107.22	0.35–0.49			
$\epsilon_y \!= 0\%$	81.758–98.91	0.37–0.47			
$\epsilon_y = 2\%$	78.528–91.16	0.39–0.47			
	I		1		

 $\lambda\text{-}Cu_2Te$ and ζ -Cu_2Te under various strain.

 $\epsilon_y = 4\%$ 68.292-84.91 0.41-0.52

Fig. S1 Orientation-dependent Young's modulus and Poisson's ratio v of monolayer ζ -Cu₂Te calculated under various values of strain ($\epsilon = -2\%$, 0%, 2%).

Fig. S2 Orientation-dependent in-plane Young's modulus and Poisson's ratio for 2D monolayer λ -Cu₂Te (a, d) and ζ -Cu₂Te (b, c) under various biaxial compressive and tensile strains.

Fig. S3 Orientation-dependent in-plane Young's modulus and Poisson's ratio for 2D monolayer λ -Cu₂Te under x-directional strains (a, d) and ζ -Cu₂Te under various compressive and tensile strains along the x- (b, e) and y-directions (c, f).

Fig. S4 Projection energy band structures of ζ -Cu₂Te corresponding to various biaxial strain values (a) $\mathcal{E} = -3\%$, (b) 0% and (c) 5% through HSE06 calculations.

Fig. S5 Calculated (a) biaxial compressive strain– and (b) biaxial tensile strain– dependent electronic band structures of monolayer ζ -Cu₂Te obtained through HSE06 calculations.

Fig. S6 Calculated (a) biaxial compressive strain– and (b) biaxial tensile strain– dependent electronic band structures of monolayer λ -Cu₂Te obtained through HSE06 calculations.

Fig. S7 Calculated (a) uniaxial compressive strain– and (b) uniaxial tensile strain– dependent electronic band structures of monolayer λ -Cu₂Te obtained through HSE06 calculations.

Fig. S8 Calculated (a) uniaxial compressive strain– and (b) uniaxial tensile strain– dependent electronic band structures of monolayer ζ -Cu₂Te obtained through HSE06 calculations.

Fig. S9 Calculated (a) uniaxial compressive strain– and (b) uniaxial tensile strain– dependent electronic band structures of monolayer ζ -Cu₂Te obtained through HSE06 calculations.

Fig. S10 Projection energy band structures of λ -Cu₂Te corresponding to various biaxial strain values (a) $\mathcal{E} = -2\%$, (b) 0% (c) 2%, through HSE06 calculations.

Fig. S11 Band-edge alignment of monolayer (a) λ -Cu₂Te and (b) ζ -Cu₂Te under various biaxial strain through HSE06 calculations with respect to the vacuum level. The gray dashed lines denote the water potential of water.

Fig. S12 Band-edge alignment of monolayer (a) λ -Cu₂Te and (b, c) ζ -Cu₂Te under various uniaxial strain through HSE06 calculations with respect to the vacuum level. The gray dashed lines denote the redox potential of water.

Fig. S13 Calculated formation energies of 2L (a) λ -Cu₂Te and (b) ζ -Cu₂Te. Side views of the structures of λ -Cu₂Te and ζ -Cu₂Te are also shown.

	Y (N/m)	V
ζ-Cu ₂ Te		
2-Layers	171.20–196.18	0.40-0.47
3-Layers	246.54–288.27	0.39–0.47
λ -Cu ₂ Te		
2-Layers	184.12	0.47
3-Layers	286.54	0.43

Table S3 Theoretical Young's modulus Y (in N/m) and Poisson's ratio v of few-layered λ -Cu₂Te and ζ -Cu₂Te.

Fig. S14 Young's modulus and Poisson's ratio of (a, b) ζ -Cu₂Te and (c, d) λ -Cu₂Te. Both are functions of the in-plane angle θ .

Fig. S15 Band structure of (a) λ -Cu₂Te and (b) ζ -Cu₂Te with the number of layers ranging from 1 to 3, through HSE06 calculations.

Fig. S16 Thickness-dependent projection energy band structures in few-layer (a) ζ -Cu₂Te and (b) λ -Cu₂Te obtained through HSE06 calculations.