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1 Introduction

This document contains additional results and techniques details to support the most

important findings reported within the manuscript. This document is separated into the

following sections listed below:

1. Selected PAW projectors: technical details;

2. Goldschmidt tolerance factor;

3. Computational convergence tests;

4. Lattice parameters and total energy;

5. Octahedral volumes, bond lengths, effective coordination number, and bond angles;

6. Bader charge and cohesive energies decomposed for its constituents;

7. Density of states;

8. Electronic bands calculations with and without spin-orbit coupling correction;

9. Band gap correction with HSE06 functional;

10. Absorption coefficient.

S3



2 Selected PAW Projectors: Technical Details

Table S1 Most important information of the selected PAW projectors. Species, PAW-PBE
projector name (Title), electronic valence distribution (Valence), number of valence electrons
(Zval) and maximum recommended cutoff energy (ENMAX) for all chemical species composing the
investigated perovskites.

Species Title Valence Zval ENMAX (eV)

H H GW 21Apr2008 1s1 1 300.000
C C GW new 19Mar2012 2s22p2 4 413.992
N N GW new 19Mar2012 2s22p3 5 420.902
Cl Cl GW 19Mar2012 3s23p5 7 262.472
Ge Ge d GW 19Mar2013 3d104s24p2 14 375.434
Br Br 20Mar2012 4s24p5 7 216.285
Sn Sn d GW 15Mar2013 4d105s25p2 14 260.066
I I GW 12Mar2012 5s25p5 7 175.647
Pb Pb d GW 14Apr2014 5p105s26s26p2 16 237.809

3 Goldschmidt Tolerance Factor

The Goldschmidt tolerance factor is one of the most common structure stability

measures considered while studying metal halide perovskites. It relates the ionic radii of

the species involved, as the tolerance factor (t) is defined by:

t =
rA + rX√

2×(rB + rX)
. (1)

The tolerance factor is a measure of how the ionic species are arranged and specify the

crystal structure of the material, i.e., if t > 1, we have a hexagonal structure, whereas for

t < 0.8, the material is described from an orthorrombic unit cell. The best optoelectronic

properties for metal halide perovskites are, however, encountered for cubic structures that

happen in the range 0.8 < t < 1.
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Table S2 Goldschmidt tolerance factors for 3D MABX3 perovskites.

BX t

GeCl 1.108
GeBr 1.086
GeI 1.055
SnCl 0.967
SnBr 0.954
SnI 0.936
PbCl 0.938
PbBr 0.927
PbI 0.912

On Table S2 we present the tolerance factors for the 3D MABX3 perovskites calculated

following Equation 1 and the ionic radii of MA+,1 Ge2+,2 Sn2+,3 Pb2+,2 Cl– ,4 Br– ,4 and I– ,1

as compiled by Hoefler et al.5 From the results present in the table, we note that, excluding

the germanium-based materials that are strongly affected by Jahn–Teller distortions,

the tolerance factor for all the studied materials are within the desired range for cubic

structures, 0.8 < t < 1.

4 Computational Convergence Tests

We performed convergence tests to identify the appropriate k-mesh and cutoff

energy (ENCUT) using as test subject the 3D MAPbI3 1×1×1 and the 2D (BA)2(MA)Pb2I7

compounds. Figure S1 shows a ball-and-stick representation of both 3D 1×1×1, panel

(a), and 2D, panel (b), perovskites, where the original structures were obtained for both

PbI-based configurations with the layered one being an experimental result of the work of

Stoumpos et al.6
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BA=CH3(CH2)3NH3+

MA=CH3NH3+

(BX6 )4 -

B = Ge , Sn, Pb X = Cl, Br, I
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Figure S1 Crystal structures for 3D 1×1×1 MAPbI3 (a) and 2D (BA)2(MA)Pb2I7 (b) perovskites.
Panel (c) indicates the legend for the chemical species and structures, while the dashed lines
indicate the unit cells.

We are aware of unrealistic descriptions while considering a 1×1×1 unit cell compared

to experimental results,7 but we are able to perform convergence tests, take these results
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and then apply to supercell structures such as a 2×2×2 which will be investigated. This

methodology is possible because the k-points test takes into account the characteristics of

electronic states, which are not changed when considering supercells. Furthermore, the

cutoff energy test depends on the chemical species and structure characteristics, which

also do not vary when using a 2×2×2 structure.

4.1 k-mesh Convergence Test

For the k-mesh convergence, we fixed ENCUT = 2 × ENMAXmax and varied the k-density

between 5 and 45 Å−3 by scales of 5 Å−3 for 3D systems, and between 20 and 35 Å−3 with

scales of 5 Å−3 for the 2D systems. Moreover, the ENCUT convergence test was performed

considering the 1×1×1 structure of MAPbI3, fixating k-density of 25 Å−3 and varying f , a

multiplicative factor, from 1 to 2.125 in scales of 0.125. This multiplicative factor describes

the relation ENCUT = f × ENMAXmax, where ENMAXmax is the highest ENMAX from the atomic

species involved.
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Figure S2 Convergence tests as function of k-mesh for 3D and 2D perovskites. Total energy,
lattice parameters and band gap energy relative to the values where the k-mesh equals 8×8×8
for 3D 1×1×1 MAPbI3 and 5×1×5 for 2D (BA)2(MA)Pb2I7 perovskites.

On the left panels of Figure S2 we study the convergence of 1×1×1 MAPbI3 as a

function of k-mesh by observing the total energy, lattice parameters and the energy gap

calculated on Γ point, relative to the values of the referred properties with a 8×8×8 grid.

Both total energy and lattice parameters calculations show that the convergence is already

observed with a 5×5×5 mesh, while the bottom left panel on Figure S2 shows a band gap

deviation of approximately 0.40 eV. The right panels of Figure S2 refer to the 2D perovskite,

where the range of values is smaller than that of MAPbI3. A 3×1×3 Å−3 mesh presents

variation not larger than 30 meV of total energy, 0.50 % on the lattice parameters and
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10 meV on the Γ calculated band gap, whereas for 4×1×4 Å−3 these values are respectively

smaller than 40 meV, 0.20 % and 12 meV.
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4.2 Cutoff Energy Convergence Test
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Figure S3 Convergence tests as a function of ENCUT for 3D 1×1×1 MAPbI3 perovskite. Total
energy, lattice parameters and band gap energy relative to the values obtained for ENCUT =
2.125 × ENMAXmax.
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On Figure S3 we present ENCUT convergence tests for the 3D 1×1×1 MAPbI3 while

fixing k-mesh equals to 5×5×5 Å−3. The top panel shows the energy difference related to

the total energy for ENCUT = 2.125 × ENMAXmax. Considering ENCUT higher than 550 eV, the

total energy difference is smaller than 50 meV, whereas for values higher than 650 eV, this

difference becomes smaller than 20 meV. Furthermore, on the middle panel of Figure S3,

we achieve a lattice parameter deviation smaller than 1.5 % when ENCUT surpasses 620 eV.

Finally, the bottom panel of Figure S3 has the variation on the energy gap calculated on

Γ, but as ENCUT is greater than 550 eV this variation is always inside the range of ±1 meV.

Both higher values of k-mesh and ENCUT lead to expensive calculations with greater

memory requirements and duration, which is why we selected a k-density of 30 Å−3

(k-meshes of 5×5×5 Å−3, 2×2×2 Å−3 and 3×1×3 Å−3 for 3D 1×1×1, 3D 2×2×2 and

2D structures) while also fixating ENCUT = 1.50 × ENMAXmax, 631 eV, to obtain optimized

geometries.

4.3 Supercell Approach for the 2D Perovskite

Table S3 Structural parameters for the 2D (BA)2(MA)Pb2I7 perovskites considering the unit cell
and a

√
2×1×

√
2 supercell: Equilibrium lattice constants (a0, b0, c0), equilibrium volumes of the

unit cells (V0), average octahedral volume (Voct.
av ), average effective coordination number for the

B species (ECNB
av), and average angles inside (XBXav) and between (BXBav) octahedra. On the

last column, we also include the total energy per formula unit (f.u.) (Etot)

Struct. a0 b0 c0 V0 Voct.
av ECNB

av XBXav BXBav Etot

(Å) (Å) (Å) (Å3) (Å3) (NNN) (°) (°) (eV)

unit cell 8.81 42.16 8.64 3205.92 43.38 5.84 176.10 156.65 −246.616 214
supercell 12.48 42.14 12.23 6431.63 43.57 5.84 176.01 156.43 −246.589 706

Table S3 shows the structural parameters for both 2D (BA)2(MA)Pb2I7 perovskite

structure approximations. The lattice parameters a0 and c0 describe the plane where

octahedral layers are present, and for them we observe a maximum of 0.17 % difference

when comparing the asuper
0 and csuper

0 to aunit
0 ×

√
2 and cunit

0 ×
√

2. On the vertical parameter,
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however, there is a shrinkage of 0.05 %, which then leads to a 0.31 % increased simulation

cell. The average local parameters in Voct.
av , XBXav and BXBav also show very small

deviations, with 0.44 %, −0.05 % and −0.14 %, respectively. Finally, the total energy per

formula unit shows that the supercell energy is greater than the one obtained for the unit

cell by only 0.01 %. Considering that no deviation surpasses even 0.50 %, the structural

parameters obtained by the simple unit cell approach seem to give a fair approximation.

With this simulation, we are also able to compare two supercell approaches: the 2D

and the 3D 2×2×2 PbI-based perovskites. The in-plane lattice parameters (12.55 Å and

12.47 Å) and the average octahedra volume (43.42 Å3) for the 3D MAPbI3 2×2×2 unit

cell depict an optimization of the PbI6
4 – octahedra, with the in-plane lattice parameters

compressing and, to achieve a larger octahedra, the vertical one expanding. However, the

relative variations for both cases do not surpass 2 %, meaning that these octahedral layers

for the 2D supercell are equivalent to what is observed in the 3D 2×2×2 supercell.
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Figure S4 Electronic band structures calculated near the band gap region with the PBE+D3
approximation for the 2D (BA)2(MA)Pb2I7 perovskites with an unit cell and a

√
2×1×

√
2

supercell approach. The zero energy is located at the valence band maximum.

S12



To compare optoelectronic properties for unit cell and supercell simulations, we

obtained the electronic bands as shown on Figure S4. The different sizes of simulation

cells forbid the naive comparison between energy levels for each high-symmetry point, as

the reciprocal space is also different. However, we can compare the band gaps observed

for these materials, namely 1.70 and 1.83 eV for unit cell and supercell simulations of

(BA)2(MA)Pb2I7, respectively. Considering that lattice parameter variations are not greater

than 0.2 %, the band gap widened by 0.13 eV is an effect of increased degree of freedom in

the larger supercell, as discussed in our previous work regarding CsGeX3 perovskites.8

Thus our 1×1×1 cell of 2D perovskite is a suitable simulation cell.

5 Equilibrium Lattice Parameters: 3D Versus 2D

As discussed on the previous section, we employ a 2×2×2 supercell approach to the

3D perovskites to improve the description of octahedral distortions, where configurations

for the other 8 BX combinations (GeCl, GeBr, GeI, SnCl, SnBr, SnI, PbCl and PbBr) were

obtained by simple chemical specie exchange and further relaxed using VASP code.

Table S4 and Table S5 show the equilibrium lattice parameters of 3D and 2D perovskites,

respectively. Lattice constants, angles between lattice vectors and equilibrium volume of

the unit cell, as well as the total energy per formula unit describe the relaxed simulated

structures for different BX combinations. Notable trends include the direct correlation of

the lattice parameters, unit cell volume and total energy per formula unit with the size of

the anion X, as larger atoms increase the crystal size and Cl-based materials have every

value lower than Br and I ones for both 3D and 2D structures.
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Table S4 Equilibrium PBE+D3 lattice parameters for 3D MABX3 perovskites with a 2×2×2
supercell: First column presents the BX-sites elements, equilibrium lattice constants (a0, b0, c0),
angles between lattice vectors (α, β, γ), equilibrium volume of the unit cell (V0), and total energy
per formula unit (f.u.) (Etot).

BX a0 b0 c0 α β γ V0 Etot

(Å) (Å) (Å) (°) (°) (°) (Å3) (eV)

GeCl 11.02 11.19 11.33 96.18 88.22 91.44 1387.78 −55.221 521

GeBr 11.47 11.70 11.50 92.83 88.19 89.15 1540.49 −53.643 892

GeI 12.13 12.30 12.21 90.85 87.80 88.30 1819.82 −51.968 656

SnCl 11.30 11.50 11.35 87.69 87.51 90.89 1473.69 −55.053 459

SnBr 11.67 11.69 11.78 90.76 86.67 89.66 1603.53 −53.542 877

SnI 12.38 12.53 12.45 89.77 89.92 89.92 1931.53 −51.829 998

PbCl 11.25 11.47 11.36 90.09 89.07 90.87 1465.56 −55.226 693

PbBr 11.77 11.93 11.88 89.75 89.63 90.46 1666.82 −53.668 614

PbI 12.47 12.74 12.55 89.64 89.91 89.59 1994.43 −51.929 460

Table S5 Equilibrium PBE+D3 lattice parameters for 2D (BA)2(MA)B2X7 perovskites: First
column presents the BX-sites elements, equilibrium lattice constants (a0, b0, c0), angles between
lattice vectors (α, β, γ), equilibrium volume of the unit cell (V0), and total energy per formula
unit (f.u.) (Etot).

BX a0 b0 c0 α β γ V0 Etot

(Å) (Å) (Å) (°) (°) (°) (Å3) (eV)

GeCl 7.98 38.98 7.44 86.67 89.84 89.93 2309.73 −254.166 608

GeBr 8.18 39.45 7.71 87.28 89.96 90.33 2487.10 −250.581 142

GeI 8.54 40.72 8.23 86.76 89.78 90.51 2857.44 −246.702 683

Continues on next page
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Table S5 – continued from previous page

BX a0 b0 c0 α β γ V0 Etot

(Å) (Å) (Å) (°) (°) (°) (Å3) (eV)

SnCl 8.12 39.51 7.53 89.15 90.14 89.61 2416.87 −253.997 883

SnBr 8.25 40.21 7.98 86.92 89.59 90.21 2643.10 −250.518 646

SnI 8.74 41.78 8.50 88.53 89.29 89.92 3102.48 −246.458 910

PbCl 8.06 39.98 7.64 88.77 90.01 89.98 2458.83 −254.354 105

PbBr 8.30 40.59 8.06 87.05 89.77 89.46 2711.36 −250.789 147

PbI 8.81 42.16 8.64 88.61 88.89 89.67 3205.92 −246.616 214

6 Local Structural Parameters: 3D Versus 2D

Octahedral distortions are present on the studied systems, and in that case, we present

a series of histograms for the following properties of 3D and 2D structures: octahedral

volumes, Voct, bond lengths between B and X atoms, effective coordination number for the

B atom that is located at the center of the octahedra, ECNB, and bond angles between atoms

X–B–X (X atoms on opposite sides of the octahedra) and B–X–B (between octahedra).

Average values for ECNB and bond angles are shown on Figure S5.

S15



E
C
N

B
(N

N
N
)

3D

2D

2.5

3.5

4.5

5.5

G
eC
l

G
eB
r

G
eI

S
n
C
l

S
n
B
r

S
n
I
P
b
C
l

P
b
B
r

P
b
I

B
on
d
an
gl
e
(◦
)

XBX 3D

BXB 3D

XBX 2D

BXB 2D

155

160

165

170

175

180

G
eC
l

G
eB
r

G
eI

S
n
C
l

S
n
B
r

S
n
I
P
b
C
l

P
b
B
r

P
b
I

Figure S5 Average effective coordination number for the B-site atom, ECNB, and average bond
angles inside and between octahedra, XBX and BXB, for 3D MABX3 and 2D (BA)2(MA)B2X7
perovskites.
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6.1 Octahedral Volumes

Figure S6 Histograms for BX6 octahedral volumes of 3D MABX3 perovskites.
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Figure S7 Histograms for BX6 octahedral volumes of 2D (BA)2(MA)B2X7 perovskites.

From both Figures S6 and S7, we note how volumes increase as B and X atoms radii

size also increase. Comparing 3D and 2D structures, we also notice that, for the more

regular octahedra in Ge-based in 2D perovskites, the 2D octahedral volumes are smaller

than their counterparts.

6.2 B–X Bond Length

Between Figure S8 and Figure S9, we note how bond lengths are spread in Ge-based

materials and converge to an average value when increasing the B atom size. This is

attributed to the higher Jahn–Teller distortions that come from the presence of Ge atoms.

Increasing X atoms size mainly increase the average bond lengths, but by comparing 3D

and 2D structures, layered perovskites with Ge do not have groups of values, but a large
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spread of lengths, meaning that although there are still distortions from these octahedra,

the ones for 2D systems are reduced.

Figure S8 Histograms for the bond lengths B–X for the 3D MABX3 compounds.
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Figure S9 Histograms for the bond lengths B–X for the 2D (BA)2(MA)B2X7 compounds.

6.3 Effective Coordination Number of B Sites.

The effective coordination number (ECN) for the B atoms (ECNB) located in the center

of the octahedra was obtained by the Visualization for Electronic and Structural Analysis

(VESTA) software9 based on the effective coordination concept. The ECN parameter is

calculated by the following equation,

ECN = ∑
i

exp

[
1 −

(
li

lav

)6]
, (2)
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where the ECN is obtained as the sum of different bond contributions (li). The weighted

average bond length (lav) is defined by the following equation,

lav =
∑i li exp

[
1 − (li/lmin)

6
]

∑i exp
[
1 − (li/lmin)6

] , (3)

where lmin is the smallest bond length within the selected polyhedron.

As discussed from the B–X bond lengths, the ECNB results describe the same behavior

from the octahedral distortions. From Figures S10 and S11, the octahedra also tend have

ECNB closer to 6 NNN as B and X atoms radii increase.

Figure S10 Histograms for BX6 octahedral effective coordination number for the 3D MABX3
compounds.
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Figure S11 Histograms for BX6 octahedral effective coordination number for the 2D
(BA)2(MA)B2X7 compounds.
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6.4 XBX Bond Angle

Figure S12 Histograms for the angle between atoms X–B–X, with X on opposite sides of the
octahedra, of 3D MABX3 perovskites.
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Figure S13 Histograms for the angle between atoms X–B–X, with X on opposite sides of the
octahedra, of 2D (BA)2(MA)B2X7 perovskites.

The X–B–X angles inside octahedra, with X atoms being on opposite sides, are shown

on Figure S12 and Figure S13. We note that for 2D perovskites, their values are greater

than those of the bulk, which is another measure of the regularity of octahedra following

the BA inclusion on bulk metal halide perovskites.
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6.5 BXB Bond Angle

Figure S14 Histograms for the angle between atoms B–X–B, connecting octahedra, of 3D MABX3
perovskites.
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Figure S15 Histograms for the angle between atoms B–X–B, connecting octahedra, of 2D
(BA)2(MA)B2X7 perovskites.

From Figure S14 and Figure S15, we note the angles between octahedra. Bulk structures

show Sn- and Pb-based perovskites with more values at higher angles, which would mean

that there are greater distortions between octahedra in the 2D perovskites. On the other

hand, GeI-based materials show an opposite behavior, with smaller values near 145° for 3D

perovskites, which pull down the average value and makes the average 2D value higher

than for 3D.
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7 Energetic Properties: 3D Versus 2D

The cohesive energy is defined in this work as,

Ecoh = Etot −
N

∑
i=1

Ei , (4)

where Etot is the total energy of the perovskite, N is the total number of atoms and Ei is the

total energy of each isolated atom present in the material. To perform a cohesive energy

decomposition, we separate the N atomic species in NBA, NMA and Noct. as the number

of atomic species present in the organic spacer BA (for the 2D perovskites), in the MA

organic molecule and in the inorganic octahedra. For each of those terms, j, we write their

cohesive energy, Ej
coh, as:

Ej
coh = Ej

tot −
N j

∑
i=1

Ei . (5)

The total energies for the constituents, Ej
tot, are obtained by selecting the atoms present

in j and removing those not present while maintaining the structure and the N j atoms

frozen. We also define an interaction energy as the difference of the total energy of the

material and its constituents, or:

Eint.
coh = Etot − EBA

tot − EMA
tot − Eoct.

tot . (6)

The equation above holds true for the 2D perovskite, while for the 3D ones, as there are no

spacer molecules, we disregard the term EBA
tot .

By adding equations 5 and 6, we obtain

EBA
coh + EMA

coh + Eoct.
coh + Eint.

coh = Etot −
NBA

∑
i=1

Ei −
NMA

∑
i=1

Ei −
Noct.

∑
i=1

Ei

= Etot −
N

∑
i=1

Ei .

(7)
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And, by comparing equations 4 and 7, we obtain another expression for the cohesive

energy as a function as the cohesive energy of its constituents, given by:

Ecoh = EBA
coh + EMA

coh + Eoct.
coh + Eint.

coh . (8)

Table S6 Decomposition of the cohesive energies, in eV, in its contributions (EBA
coh, EMA

coh , Eoct.
coh , Eint.

coh )
for the 3D MABX3 and 2D (BA)2(MA)B2X7 perovskites. EBA

coh, EMA
coh , Eoct.

coh , and Eint.
coh indicate the

organic spacer, organic MA molecule, inorganic frame, and the interaction energy between the
molecules and inorganic framework contributions, respectively. First and last columns indicate
the BX species and the cohesive energy per atom (Eatom

coh ).

BX Struct. Ecoh EBA
coh EMA

coh Eoct.
coh Eint.

coh Eatom
coh

GeCl 3D −336.96 – −212.10 −82.60 −42.26 −3.51

2D −778.55 −522.89 −105.53 −83.22 −66.90 −3.82

GeBr 3D −326.78 – −211.57 −75.05 −40.16 −3.40

2D −767.04 −522.81 −105.41 −76.53 −62.29 −3.76

GeI 3D −314.68 – −211.07 −67.21 −36.40 −3.28

2D −753.05 −522.40 −105.17 −68.64 −56.84 −3.69

SnCl 3D −336.50 – −211.88 −84.08 −40.55 −3.51

2D −778.76 −523.00 −105.48 −86.07 −64.21 −3.82

SnBr 3D −326.85 – −211.18 −77.13 −38.54 −3.40

2D −767.68 −523.04 −105.31 −79.14 −60.19 −3.76

SnI 3D −314.45 – −210.74 −68.18 −35.54 −3.28

2D −752.96 −522.05 −105.03 −70.41 −55.47 −3.69

PbCl 3D −338.35 – −211.74 −81.98 −44.63 −3.52

2D −780.64 −523.29 −105.48 −82.22 −69.66 −3.83

PbBr 3D −328.32 – −211.29 −75.04 −41.99 −3.42

2D −769.22 −523.09 −105.28 −75.79 −65.06 −3.77

Continues on next page
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Table S6 – continued from previous page

BX Struct. Ecoh EBA
coh EMA

coh Eoct.
coh Eint.

coh Eatom
coh

PbI 3D −315.71 – −210.63 −66.86 −38.22 −3.29

2D −754.05 −522.11 −105.04 −67.97 −58.93 −3.70
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Figure S16 Eoct.
coh and Eint.

coh differences, in eV, between 2D (BA)2(MA)B2X7 and 3D MABX3
perovskites.

7.1 Formation Enthalpy Calculation

Formation enthalpy (∆H f ) gives us the energetic cost to obtain any model system,

which references its individual constituents.

For our perovskite models, we can define the formation enthalpy as follows:

∆H2D
f =

1
NX

{
E(BA)8(MA)4(B2X7)4

tot −
(

8EBX2
tot + 8EBAX

tot + 4EMAX
)}

(9)

for 2D models, and
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∆H3D
f =

1
NX

{
EMA8(BX3)8

tot −
(

8EBX2
tot + 8EMAX

tot

)}
(10)

for 3D one (M= Ge, Sn, Pb, and X= Cl, Br, I). EBX2
tot , EBAX

tot , and EMAX
tot are the total energy

of the BX2, MAX, and BAX respectively. NX is the number of halides in the perovskite

model.

Now we want to compare the 3D formation enthalpy with the 2D one. For this, we

further analyze each term of Equations 9 and 10, considering the constituents in the gas

phase (g label). For the 3D model, we write the total energies in the following way:

EMA8(BX3)8
tot = EMA8(BX3)8

coh +
NC

∑
i

EC
i +

NN

∑
i

EN
i +

NH

∑
i

EH
i +

NB

∑
i

EB
i +

NX

∑
i

EX
i ;

EBX2(g)
tot = EBX2

coh + EB
i +

2

∑
i

EX
i ;

EMAX(g)
tot = EMAX

coh + EC
i + EN

i +
6

∑
i

EH
i + EX

i .

Put it in the Equation 10, we have

∆H3D
f =

1
NX

(
EMA8(BX3)8

coh +
8

∑
i

EC
i +

8

∑
i

EN
i +

48

∑
i

EH
i +

8

∑
i

EB
i +

NX

∑
i

EX
i

)
+

− 8
NX

(
EBX2(g)

coh +
1

∑
i

EB
i +

2

∑
i

EX
i

)
− 8

NX

(
EMAX(g)

coh + EC
i + EN

i +
6

∑
i

EH
i + EX

i

)
, (11)

what give us

∆H3D
f =

1
NX

{
EMA8(BX3)8

coh − 8
(

EBX2(g)
coh + EMAX(g)

coh

)}
. (12)

The same result is valid for a solid phase (s label) reference. Since we have the cohesive

energy per formula unit of BX2 in the solid phase, we can write:

∆H3D
f =

1
NX

{
EMA8(BX3)8

coh − 8
(

EBX2(s)
coh + EMAX(g)

coh

)}
. (13)
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The above analyses can be performed on the 2D model. Since we know the cohesive

energy of the BAX molecule (EBAX
coh ) we have

∆H2D
f =

1
NX

{
E(BA)8(MA)4(B2X7)4

coh −
(

8EBX2
coh + 8EBAX

coh + 4EMAX
coh

)}
. (14)

Finally, we have the expression for the formation enthalpy as a function of cohesive

energy, allowing further quantification of the structural stability of our models. Once in

the decomposition process, the broken bonds of B-X lead to the formation of individual

constituents. We can write the enthalpy of formation per number of halides (NX) in order

to correctly compare the formation enthalpy energy of the 3D model with that of the 2D

model

7.1.1 Total Energies Calculation of Constituents

To obtain the total energies of constituents, we perform the following steps:

Gas phase 1. First, we place the molecule in an orthorhombic box, where the lattice

parameters were chosen in a way to keep a minimal distance of 15 Å between the

molecule and its image, taking into account the molecule size in each direction.

2. Including a cutoff energy of 473.514 750 eV, ISIF = 0, k-grid of 1×1×1, and

SPIN = 2, and using selective dynamics, we optimize the atomic positions of

the X site only.

3. After obtaining the optimized X site in relation to the MA, we remove the

selective dynamics and optimize the atomic positions of the entire molecule

using the same cutoff as in the previous steps (the same one used for the total

energy calculation of 2D and 3D perovskite).

4. The BX2 models were optimized without any steps of selective dynamics.

Solid phase 1. First, we select the structure in the Materials Project and perform a stress tensor
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calculation, including an ENCUT = 1.5ENMAXmax, ISIF = 3, k-density of 30Rk.

Here, we use a step-by-step procedure, including NSW = 5, 10, 20, 40, ..., until a

constant regime is reached for the total volume and lattice parameters.

2. After obtaining the optimized lattice parameters, we perform an optimization

of atomic positions only to minimize the forces on each atom. For this, we use

ISIF = 0 and a cutoff energy of 473.514 750 eV .

Table S7 PBE+D3 structural parameters, including maximum and minimum values for
solid-phase SnI2 and PbCl2 models. dAX

H−X is H − X bonding length at AX constituents, dAX
N−H is

N − H bonding length at AX molecule, and dBX2
B−X is the B − X bonding length at BA component.

AX dAX(g)
H−X dAX(g)

N−H BX2 dBX2(s)
M−X dBX2(g)

M−X
(Å) (Å) (Å) (Å)

MACl 1.46 1.42 GeCl2 2.67 2.21
MABr 1.75 1.24 GeBr2 2.80 2.36
MAI 2.04 1.18 GeI2 3.02 2.58
BACl 1.47 1.41 SnCl2 3.05 2.39
BABr 1.77 1.23 SnBr2 3.01 2.54
BAI 2.05 1.17 SnI2 3.16/3.25 2.75

PbCl2 2.83/2.87 2.49
PbBr2 3.05 2.63
PbI2 3.24 2.83

Table S8 Formatiom enthalpy of 3D and 2D model, including solid phase (∆H(s)
f ) and gas pahs

phse (∆H(g)
f reference. PBE+D3 total energy of constituents. EAX(g)

tot is total energy of AX in gas

phase, EBX2(s)
tot is total energy of BX2 in solid phase, and EBX2(g)

tot is total energy of BX2 in gas
phase.

BX Struct. ∆H(s)
f /∆H(g)

f BX2 EBX2(s)
tot EBX2(g)

tot AX EAX(g)
tot

(eV/NX) (eV/f.u.) (eV) (eV)

GeCl 3D −0.96/−0.70 GeCl2 −10.831 371 −10.038 784 MACl −42.299 488

2D −1.12/−0.90 – – – BACl −91.958 133

Continues on next page

S32



Table S8 – continued from previous page

BX Struct. ∆H(s)
f (∆H(g)

f ) BX2 EBX2(s)
tot EBX2(g)

tot AX EAX(g)
tot

(eV/NX) (eV/f.u.) (eV)

GeBr 3D −1.01/−0.68 GeBr2 −9.909 206 −8.923 221 MABr −41.686 236

2D −1.19/−0.91 – – – BABr −91.351 644

GeI 3D −1.05/−0.57 GeI2 −9.184 401 −7.743 727 MAI −41.082 379

2D −1.23/−0.82 – – – BAI −90.752 562

SnCl 3D −1.01/−0.59 SnCl2 −10.978 674 −9.709 201 – –

2D −1.19/−0.83 – – – – –

SnBr 3D −1.07/−0.64 SnBr2 −9.940 723 −8.659 687 – –

2D −1.26/−0.89 – – – – –

SnI 3D −1.07/−0.58 SnI2 −9.019 955 −7.528 903 – –

2D −1.26/−0.83 – – – – –

PbCl 3D −1.17/−0.61 PbCl2 −11.090 975 −9.411 815 – –

2D −1.33/−0.85 – – – – –

PbBr 3D −1.18/−0.62 PbBr2 −10.137 152 −8.441 204 – –

2D −1.36/−0.88 – – – – –

PbI 3D −1.15/−0.54 PbI2 −9.224 477 −7.385 337 – –

2D −1.32/−0.80

8 Effective Bader Charge: 3D Versus 2D
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Table S9 Effective Bader charge, QBader, for the constituents of the 3D MABX3 and 2D
(BA)2(MA)B2X7 perovskites. First column presents the BX-sites elements.

BX Struct. QBA
Bader QMA

Bader QB
Bader QX

Bader

GeCl 3D – 6.46 8.81 −15.28

2D 6.40 3.14 8.88 −18.42

GeBr 3D – 6.24 7.46 −13.70

2D 6.15 3.00 7.53 −16.69

GeI 3D – 5.89 5.56 −11.45

2D 5.81 2.83 5.59 −14.23

SnCl 3D – 6.42 10.12 −16.54

2D 6.37 3.12 10.11 −19.60

SnBr 3D – 6.24 9.01 −15.25

2D 6.11 3.00 8.97 −18.08

SnI 3D – 5.93 7.41 −13.34

2D 5.90 2.85 7.23 −15.98

PbCl 3D – 6.39 10.22 −16.61

2D 6.33 3.10 10.12 −19.54

PbBr 3D – 6.20 9.05 −15.25

2D 6.05 2.98 8.99 −18.02

PbI 3D – 5.92 7.59 −13.51

2D 5.86 2.85 7.40 −16.11

The Bader charges presented on Table S9 are the total charges for each part of the

perovskites as obtained from the code obtained by Henkelman et al.10 E.g. for both organic

molecules, the result is the sum of the charges for C, N and H species located on each

molecule. Values for QB
Bader are comparable between 2D and 3D structures, as we note that
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only for Ge-based perovskites the charge transference is higher for 2D systems. It is also

possible to compare QMA
Bader, as there are twice MA molecules on 3D systems, resulting in

greater Bader charge for 3D systems.

9 Density of States: 3D Versus 2D
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Figure S17 Local density of states obtained by the PBE+D3 calculations for the 3D MABX3
perovskites. The vertical dashed lines indicate the valence band maximum.
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Figure S18 Local density of states obtained by the PBE+D3 calculations for the 2D
(BA)2(MA)B2X7 perovskites. The vertical dashed lines indicate the valence band maximum.

10 Electronic Band Structures: 3D Versus 2D

Since the 3D perovskites MABX3 presents a cubic lattice, however, with local distortions,

the high-symmetry points from a cubic cell presented on Figure S19 are used in the

electronic bands calculation. 2D perovskites with formula (BA)2(MA)B2X7, on the other

hand, present a tetragonal structure, where the high-symmetry points from a generic unit

cell used in the electronic bands calculation are presented on Figure S20.
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Figure S19 Brillouin zone for a cubic structure with the high-symmetry points and its coordinates.
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Figure S20 Brillouin zone for a tetragonal structure with the high-symmetry points and its
coordinates.

On Figure S21 through Figure S29, we present the electronic band structures for 3D (left

panels) and 2D (right panels) perovskites comparing the effect of SOC. The valence band

maximum was shifted to 0 on each panel. Also, from Figure S30 to Figure S38, we present

the same electronic band structures but on a smaller range near the band gap region.
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Figure S21 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MAGeCl3 and 2D (BA)2(MA)Ge2Cl7
perovskites. The zero energy is located at the valence band maximum.
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Figure S22 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MAGeBr3 and 2D (BA)2(MA)Ge2Br7
perovskites. The zero energy is located at the valence band maximum.
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Figure S23 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MAGeI3 and 2D (BA)2(MA)Ge2I7
perovskites. The zero energy is located at the valence band maximum.
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Figure S24 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MASnCl3 and 2D (BA)2(MA)Sn2Cl7
perovskites. The zero energy is located at the valence band maximum.
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Figure S25 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MASnBr3 and 2D (BA)2(MA)Sn2Br7
perovskites. The zero energy is located at the valence band maximum.
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Figure S26 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MASnI3 and 2D (BA)2(MA)Sn2I7
perovskites. The zero energy is located at the valence band maximum.
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Figure S27 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MAPbCl3 and 2D (BA)2(MA)Pb2Cl7
perovskites. The zero energy is located at the valence band maximum.
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Figure S28 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MAPbBr3 and 2D (BA)2(MA)Pb2Br7
perovskites. The zero energy is located at the valence band maximum.
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Figure S29 Electronic band structures calculated with the PBE+D3 (solid black line) and
PBE+D3+SOC (solid red line) approximations for the 3D MAPbI3 and 2D (BA)2(MA)Pb2I7
perovskites. The zero energy is located at the valence band maximum.
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Figure S30 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MAGeCl3 and
2D (BA)2(MA)Ge2Cl7 perovskites. The zero energy is located at the valence band maximum.
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Figure S31 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MAGeBr3 and
2D (BA)2(MA)Ge2Br7 perovskites. The zero energy is located at the valence band maximum.
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Figure S32 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MAGeI3 and 2D
(BA)2(MA)Ge2I7 perovskites. The zero energy is located at the valence band maximum.
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Figure S33 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MASnCl3 and
2D (BA)2(MA)Sn2Cl7 perovskites. The zero energy is located at the valence band maximum.

S50



E
n
er
gy

(e
V
)

MASnBr3

−1

0

1

2

Γ X M R Γ M

(BA)2(MA)Sn2Br7

Γ X M Γ Z R A Z

Figure S34 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MASnBr3 and
2D (BA)2(MA)Sn2Br7 perovskites. The zero energy is located at the valence band maximum.
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Figure S35 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MASnI3 and 2D
(BA)2(MA)Sn2I7 perovskites. The zero energy is located at the valence band maximum.
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Figure S36 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MAPbCl3 and
2D (BA)2(MA)Pb2Cl7 perovskites. The zero energy is located at the valence band maximum.
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Figure S37 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MAPbBr3 and
2D (BA)2(MA)Pb2Br7 perovskites. The zero energy is located at the valence band maximum.
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Figure S38 Electronic band structures calculated near the band gap region with the PBE+D3
(solid black line) and PBE+D3+SOC (solid red line) approximations for the 3D MAPbI3 and 2D
(BA)2(MA)Pb2I7 perovskites. The zero energy is located at the valence band maximum.

11 Band Gap Corrections

Table S10 Fundamental band gap energies, in eV, for 3D and 2D perovskites calculated
with different approximations, e.g., PBE+D3, PBE+D3+SOC, HSE06 (Γ-point calculation),
and PBE+D3+χ (corrected by scissor operator). χ indicates the scissor operator, where χ =
χSOC + χHSE06 (differences from the PBE+D3 values). The optical band gap is also included on
the last column (Eop.

g )

BX Struct. EPBE+D3
g EPBE+D3+SOC

g χSOC EHSE06
g χHSE06 Eg Eop.

g

GeCl 3D 2.4478 2.4122 −0.0356 3.3415 0.8937 3.3059 3.3232

2D 2.4541 2.4047 −0.0494 3.3991 0.9450 3.3497 3.3497

GeBr 3D 1.6344 1.5984 −0.0360 2.3963 0.7619 2.3603 2.3861

Continues on next page
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Table S10 – continued from previous page

BX Struct. EPBE+D3
g EPBE+D3+SOC

g χSOC EHSE06
g χHSE06 Eg Eop.

g

2D 1.6658 1.6150 −0.0508 2.4675 0.8017 2.4166 2.4166

GeI 3D 1.2088 1.0834 −0.1254 1.7730 0.5642 1.6476 1.6792

2D 1.1694 1.0501 −0.1193 1.7811 0.6117 1.6618 1.7398

SnCl 3D 1.9082 1.6822 −0.2260 2.6673 0.7591 2.4413 2.4851

2D 2.2111 2.0039 −0.2072 3.0460 0.8227 2.8266 2.8266

SnBr 3D 0.8985 0.6502 −0.2483 1.5022 0.6037 1.2539 1.2539

2D 1.2379 1.0368 −0.2011 1.9232 0.6849 1.7217 1.8124

SnI 3D 0.6997 0.3903 −0.3094 1.1930 0.4933 0.8836 0.9020

2D 0.8822 0.6927 −0.1895 1.4182 0.5360 1.2287 1.2427

PbCl 3D 2.5765 1.5074 −1.0691 3.4064 0.8299 2.3373 2.3373

2D 2.5898 1.7518 −0.8380 3.4745 0.8847 2.6365 2.6365

PbBr 3D 1.9829 0.9749 −1.0080 2.7110 0.7281 1.7030 1.7030

2D 2.1672 1.3688 −0.7984 2.9479 0.7807 2.1495 2.1836

PbI 3D 1.6768 0.6910 −0.9858 2.2824 0.6056 1.2966 1.2966

2D 1.8185 1.0596 −0.7589 2.4562 0.6377 1.6973 1.7143

On Table S10 we present the fundamental electronic band gaps obtained from PBE+D3,

PBE+D3+SOC and HSE06 calculations for both 3D and 2D perovskite systems. HSE06

results are more accurate than PBE+D3 ones, but including SOC effects would greatly

increase the computational costs of the simulations. Therefore, we achieved a trade-off

between accuracy and simulation costs by having calculations for PBE+D3+SOC and

HSE06 on Γ, and employing a scissors operator from both contributions to the PBE+D3

band gap. On the last column of Table S10 we also present the optical band gap of the

systems, obtained from the first observed optical transition.
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12 Absorption Coefficient

The absorption coefficient (α(ω)) is calculated using the following equation:

α(ω) =

√
2ω

c

[√
ε2

R + ε2
I − εR

] 1
2

, (15)

in which ω is the incident photon frequency, c stands for the speed of light, and the terms

εR and ε I are respectively the real and imaginary parts of the dielectric function. As ε(ω)

is a tensor, the absorption coefficient is separable within its coordinates and we calculate

the total absorption coefficient as the sum of the three diagonal components (xx, yy, zz).
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