Supporting Information

Nitrogen-rich Ce-N compounds under high pressure

Yuan-Yuan Wang,¹ Shuang Liu,¹ Shuang-Chen Lu,^{2*} Yi Li,³ Zhen Yao^{1*}

¹ State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China

² Department of Radiotherapy, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, P. R. China

³ College of Science, Liaoning University of Technology, Jinzhou 121000, P. R. China

Fig. S1. The convex hull diagram of Ce-N system at 100, 150, 200 GPa.

Fig. S2. Phonon dispersion curves for (a) $Pmn2_1$ -CeN₇ at 50 GPa, (b) Amm2-CeN₉ at 50 GPa, (c) P1-CeN₁₀ at 50 GPa, and (d) P1-II-CeN₁₀ at 10 GPa.

Fig. S3. Enthalpy-pressure diagrams of $Pmn2_1$ -CeN₇, Amm2-CeN₉, $P\overline{1}$ -CeN₁₀, and $P\overline{1}$ -II-CeN₁₀.

Fig. S4. Polyhedral structures of predicted Ce-N compounds: (a) *C*2-CeN₇, (b) *Amm*2-CeN₉, (c) *P***1**-CeN₁₀, and (d) *P***1**-II-CeN₁₀.

Fig. S5. Band gaps of the $P\overline{1}$ -CeN₁₀ and $P\overline{1}$ -II-CeN₁₀ with variable pressure.

Fig. S6. (a) IR spectra of $Pmn2_1$ -CeN₇, (b) IR spectra of Amm2-CeN₉, (c) and (d) IR and Raman spectra of $P\overline{1}$ -CeN₁₀, (e) and (f) IR and Raman spectra of $P\overline{1}$ -II-CeN₁₀.

Fig. S7. IR vibrational modes of *Pmn2*₁-CeN₇ at 100 GPa.

Fig. S8. IR vibrational modes of Amm2-CeN9 at 200 GPa.

Fig. S9. IR vibrational modes of P¹-CeN₁₀ at 100 GPa.

Fig. S10. Raman vibrational modes of $P\overline{1}$ -CeN₁₀ at 100 GPa.

Fig. S11. IR vibrational modes of P1-II-CeN₁₀ at 150 GPa.

Fig. S12. Raman vibrational modes of $P\overline{1}$ -II-CeN₁₀ at 150 GPa.

Table S1 Elastic constants (GPa) of the four phases at predict pressures.

phase	C_1	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₂₃
Pmn2 ₁ -CeN ₇	660	806	778	154	249	219	229	347	169

phase	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₂₃
Amm2-CeN ₉	1247	1793	1071	422	291	440	444	294	355

phase	C ₁₁	C ₂₂	C ₃₃	C44	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₁₅	C ₂₃	C ₂₅	C ₃₅	C ₄₆
P1-CeN ₁₀	671	1435	722	241	244	215	176	300	-25	164	-95	53	-101

phase	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C55	C ₆₆	C ₁₂	C ₁₃	C ₁₅	C ₂₃	C ₂₅	C ₃₅	C ₄₆
P1_∏_	1177	913	1096	116	321	211	216	474	-129	150	-25	-107	-17
CeN ₁₀													

For the orthorhombic phase, the mechanical stability criteria are shown as follows:

$$C_{11} > 0; C_{44} > 0; C_{55} > 0; C_{66} > 0;$$

$$C_{11}C_{22} > C_{12}^2;$$

 $C_{11}C_{22}C_{33} + 2C_{12}C_{13}C_{23} - C_{11}C_{23}^2 - C_{22}C_{13}^2 - C_{33}C_{12}^2 > 0.$

For the triclinic phase, the mechanical stability criteria are shown as follows:

$$\begin{split} &C_{11} > 0; \ C_{22} > 0; \ C_{33} > 0; \ C_{44} > 0; \ C_{55} > 0; \ C_{66} > 0; \\ &[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0; \\ &(C_{33}C_{55} - C_{35}C_{35}) > 0; \\ &(C_{44}C_{66} - C_{46}C_{46}) > 0; \\ &(C_{22} + C_{33} - 2C_{23}) > 0; \\ &(C_{22}(C_{33}C_{55} - C_{35}C_{35}) + 2C_{23}C_{25}C_{35} - C_{23}C_{25}C_{25}C_{25}C_{33}) > 0(2(C_{15}C_{25}(C_{33}C_{12} - C_{13}C_{23}) + C_{15}C_{35}(C_{22}C_{13} - C_{12}C_{23}) + C_{25}C_{35}(C_{11}C_{23} - C_{12}C_{13})) - (C_{15}C_{15}(C_{23}C_{33} - C_{23}C_{23}) + C_{25}C_{25}(C_{11}C_{33} - C_{13}C_{13}) + C_{35}C_{35}(C_{11}C_{22} - C_{12}C_{12})) + C_{55}g) > 0. \\ &g = C_{11}C_{22}C_{33} - C_{11}C_{23}C_{23} - C_{22}C_{13}C_{13} - C_{33}C_{12}C_{12} + 2C_{12}C_{13}C_{23}. \end{split}$$

At predict pressure, the orthorhombic Pmn2₁-CeN₇ and Amm2-CeN₉, triclinic P1_

 CeN_{10} and *P***1**-II-CeN₁₀ are mechanically stable due to that their elastic constants satisfy to the criteria.

Structure	Lattice parameters	Atomic Positions
<i>Pmn</i> 2 ₁ -CeN ₇	a =6.934, b =3.856, c =4.006 Å α=β=γ=90°	Ce1 (2a) (0.000, 0.226, -0.155) N1(4b) (0.339, 0.193, -0.177) N2 (4b) (0.828, 0.176, -0.652) N3 (4b) (0.166, 0.716, -0.011) N4 (2a) (0.500, 0.304, -0.020)
Amm2-CeN ₉	a =4.455, b =5.780, c =4.313 Å α=β=γ=90°	Ce1 (2a) (0.000, 0.000, -0.670) N1(4c) (0.757, 0.000, -0.162) N2 (2b) (0.500, 0.000, -0.678) N3 (8f) (0.749, 0.313, -0.827) N4 (4e) (0.500, 0.198, -0.830)
P1-CeN ₁₀	a =4.169, b =4.217, c =4.512 Å α=67.004, β=104.702, γ=94.408°	Ce1 (1e) (0.500, 0.500, 0.000) N1(2i) (0.761, 0.824, 0.578) N2 (2i) (0.917, 0.012, 0.753) N3 (2i) (0.252, 0.048, 0.756) N4 (2i) (0.759, 0.320, 0.602) N5 (2i) (0.932, 0.519, 0.734)
Pl-II-CeN ₁₀	a =3.645, b =4.090, c =4.657 Å α=107.381, β=82.415, γ=91.117°	Ce1 (1e) (0.000, 0.500, 0.000) N1(2i) (0.300, 0.179, 0.327) N2 (2i) (0.230, 0.709, 0.444) N3 (2i) (0.047, 0.879, 0.701) N4 (2i) (0.517, 0.826, 0.932) N5 (2i) (0.578, 0.723, 0.415)

Table S2 Structural parameters (Å, °) of the four Ce-N compounds.

phase	N-N bond	bond length	number of bonds	average bond length	-ICOHP			
	N1-N2	1.43	4					
Duran CoN	N1-N4	1.35	4	1 27	12.80			
$I mn 2_1$ -Celly	N2-N3	1.32	4	1.37	12.00			
	N1-N3	1.38	4					
	N1-N1	1.29	4					
	N1-N3	1.29	4					
Amm2-CeN ₉	N1-N4	1.30	4	1.30	14.56			
	N2-N4	1.32	4					
	N3-N4	1.30	4					
	N1-N3	1.37	2					
	N2-N3	1.39	2					
PICN	N1-N2	1.35	2	1 25	12.02			
I -CeN ₁₀	N1-N5	1.35	2	1.55	12.95			
	N2-N4	1.34	2					
	N4-N5	1.29	2					
	N1-N3	1.30	2					
	N3-N2	1.29	2					
	N2-N5	1.26	2	1 20	14.06			
P1-II-CeN ₁₀	N5-N1	1.29	2	1.29	14.90			
	N1-N4	1.29	2					
	N4-N4	1.38	1					

 Table S3 Bond lengths and -ICOHP in Ce-N compounds.

 Table S4 Elastic constants (GPa) of the four phases at ambient pressure.

phase	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C55	C ₆₆	C ₁₂	C ₁₃	C ₂₃
Pmn2 ₁ -CeN ₇	162	254	256	27	61	59	62	75	69

phase	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₂₃
Amm2-CeN ₉	370	689	149	148	51	165	95	57	74

phase	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₁₅	C ₂₃	C ₂₅	C ₃₅	C ₄₆
P1_	811	210	194	54	61	57	49	51	-41	48	2	19	-7
CeN ₁₀								• -					

phase	C ₁₁	C ₂₂	C ₃₃	C ₄₄	C55	C ₆₆	C ₁₂	C ₁₃	C ₁₅	C ₂₃	C ₂₅	C ₃₅	C ₄₆
Pī-II-	467	135	309	38	88	27	2	61	-7.8	28	-6	-19	-5

CeN ₁₀						
-------------------	--	--	--	--	--	--

At ambient pressure, the criteria of mechanical stability are the same as above. The orthorhombic $Pmn2_1$ -CeN₇ and Amm2-CeN₉, triclinic P1-CeN₁₀ and P1-II-CeN₁₀ are mechanically stable due to that their elastic constants satisfy to the criteria.