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The complete bio-hybrid model

The model accounts for:

• a time dependence to account for the light switching on/off effect on the NP polar-

ization and also production of O−2 ;

• the drift and diffusion of the electrolytic ions Sodium, Potassium and Chlorine, present

in the extracellular solution;

• a detailed description of the cleft region, accounting for the volume-filling effect induced

by the adhesion protein;

• the interaction between neuron and the external environment through the Goldman-

Hodgkin-Katz model of ion conductances.

The goal is to quantitatively give an estimation of the electrostatic perturbation exerted by

the NP on the surrounding environment and to evaluate the concentration of superoxide

reaching the neuron membrane, thus possibly triggering a chemical effect onto the cellular

membrane.

The mathematical model

In the present model we couple the Drift-Diffusion model describing the P3HT nanoparticle

(similar to what has been done in [3; 6]) with the multi-physical description of the electrolytic

solution. In addition, we introduce an original formulation of the Poisson-Nernst-Planck

model in the cleft proteinic region, in which we modify the electrochemical transport by

adding a term proportional to the protein spatial distribution. This term describes the effect

exerted on ions by proteins when they fill a certain volume space, thus staving off the ions

which are repelled from the protein-filled region. The electro-diffusive motion of ions in

the bulk electrolytic solution instead faithfully relate to the classical Poisson-Nernst-Planck

model. In addition, we also include the modeling of the possible electrostatic and ionic

interactions occurring with a neuronal cell positioned at the endpoint of the domain.

A drawing of the full system is reported in fig. 1: in panel A we show the schematic drawing of

the full multi-physical and three-dimensional domain of a P3HT-NP engulfed into a neuron;

in panel B instead we illustrate the mathematical computational domain under consideration.

Spatial domain

Equations are solved along a 1D system, reported in panel B of fig. 1. The one dimensional

domain open interval (0,W) comprises four subdomains, Ω = {Ω1,Ω2,Ωbis
2 ,Ω3}, where Ω1

represents the cleft region in between the neuron and the NP, Ω2 the NP domain, Ωbis
2 the

interstitial path which connects the extracellular region with the cleft environment and Ω3 the

extracellular electrolytic solution. The interface between the neuron and the cleft is located

at x= 0, between P3HT-NP and the cleft is located at x= R1 whereas the interface between

the P3HT-NP and the electrolytic solution is located at x= R2.

The ionic interstitial path, Ωbis
2 , also connects the points x= R1 and x= R2 accounting for

a possible trajectory of the ions dispersed in solution.This may be physically supported by

diffusive fluxes at both nodes R1 and R2 which may branch towards either the cleft or the

extracellular medium depending on the physical environment. Without the description of



Figure 1: In the figure we show how we have translated the multi-physical domain of one of the many

P3HT-NPs attached to the neuron membrane (as experimentally done in Maya-Vetencourt et al.

[12, 11] and Francia et al. [6]) into a geometrical 1D representation of the system. In panel A we

graphically represent a neuron, whose dendrites are covered by NPs (tens or hundred experimentally).

If we zoom on one of this NP, we understand the more microscopic nature of the system: the NP is

engulfed into the neuron membrane. However, a direct contact is hindered by the presence of a region

called ”cleft”, an interstitial space supposedly filled by adhesion protein which allow the anchoring of

the NP to the membrane. The symmetry of this complex system along the x axis reported in panel A

allows us to model it with a 1D description, along the axis crossing the center of the NP. In panel B

we report the geometrical domain adopted for the simulations, comprising the cleft, the NP and the

extracellular region.
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a possible connection between the cleft and the extracellular environment the two regions

would be completely independent one from each other and the model would lose generality.

The nanoparticle diameter is assumed equal to 300 nm. The cleft region is instead modeled

with a thickness of 30 nm and W is placed at 1330 nm. We also denote by n1, n2 and n3 the

outward unit normal vectors associated with the three subdomains Ω1,Ω2,Ω3, respectively.

Temporal domain

The model equations are solved in the time domain IT := (0,T), where T = 1 s. Inside

this time domain, to simulate a retinal physiological input, we define the light on interval as

Ilight
T = (Ti,Tf), with Ti = 0.1 s and Tf = 0.2 s, represented in ??. The light stimulus has a

duration of 100 ms, unless differently specified.

The initial condition

In order to solve our system we require to know the initial condition of the system, which we

supposed to be in a dark condition.

• As far as it regards all the ions, they are initialized across the whole domain of def-

inition Ω1,Ωbis
2 and Ω3 as constant, with value equal to their electrolytic equilibrium

concentration:

cα(x, 0) = cbulk
α ∀x ∈ Ω1 ∪Ωbis

2 ∪Ω3 (1)

cO−2
(x, 0) = ceq

O−2
∀x ∈ Ω1 ∪Ωbis

2 ∪Ω3 (2)

• Concerning electrons and holes, they are initialized to the intrinsic concentration of the

material in dark, ni = 1012 m−3

p(x, 0) = ni ∀x ∈ Ω2 (3)

n(x, 0) = ni ∀x ∈ Ω2 (4)

• The initial electric potential is instead determined by solving the linear Poisson equation,

interface and boundary conditions described in the following, assuming a ρ0 = 0.

• With this set of initial conditions, we solve the steady state version of the model

reported in the following sections in a dark condition and adopt the output dark steady

state solutions as initial conditions of the time dependent model.

The modified Poisson-Nernst-Planck model

Given a 3-dimensional set of coordinates, indicated with x, it is well known that the equation

describing the flux density of a charged mixture of ions α, can be derived from the momentum

balance equation, and written as:

jα = cαvα (5)

where vα represents the velocity of the ions, which can be related to several mechanisms.

In particular the most common contributions in literature are those related to diffusional or

electric gradient and to the drift induced by the fluid velocity in which the charged particle

mixture is immersed. The three contributions read as follows:
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∗ the convective flux density due to the drifting effect of the electric field on the charged

particles

jel
α = µα

zα
|zα|

cαE (6)

where the electric field E = −∇xψ;

∗ the diffusive flux density due to the molecular ion diffusion process described by Fick’s

law

jdiff
α = −Dα∇xcα; (7)

∗ the convective flux density due to the drifting effect of the velocity of the fluid com-

ponent on the charged particles

jfluid
α = cαvf ; (8)

Whereas the first two contributions are expected to exert a non negligible electro-diffusion

effect in our system, we reasonably assume the extracellular medium in which the neuron

and the NP are immersed to be still, particularly in the cleft interstitial region where, due to

the reduced thickness, we do not expect any significant fluid velocity. Coherently, we neglect

the fluid-velocity contribution of eq. (8).

However, we introduce an original modification to the model, accounting for a velocity of the

ions induced by the protein filling a certain volume: due to the occupation of space caused

by the volumetric presence of adhesion proteins, ions are repelled and tend to move towards

more empty spaces. This contribution does not depend on the charge sign of the carrier, but

solely on the concentration gradient of the protein: depending on how much protein fills the

volume, ions drift away towards protein-free regions. We will refer to this drift term in the

following as the proteinic drift.

jp
α = −µαVth

cα
cp
∇xcp; (9)

where cp is the protein concentration. The ionic flux density in our model can be therefore

written as:

jα = −µα
zα
|zα|

cα

(
+∇xψ +

Vth

zα

∇xcα

cα
+
|zα|Vth

zα

∇xcp

cp

)
(10)

One interpretation of the classical drift-diffusion transport model amounts to writing jα as a

function of the gradient of a unified potential field, the electrochemical potential ϕec which

accounts for both the diffusive and the electrical contributions. We can define in our modified

version of the Poisson-Nernst-Planck model, the electrochemical-proteinic potential ϕecpα as:

ϕecp
α = ϕec

α + ϕp
α = ψ +

Vth

zα
ln

(
cα
c ref
α

)
+
|zα|Vth

zα
ln

(
cp

c ref
p

)
(11)

being ϕp
α the proteinic potential for the ion α:

ϕp
α =

|zα|Vth

zα
ln

(
cp

c ref
p

)
(12)
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Therefore, the flux density can be rewritten as:

jα = −µα
zα
|zα|

cα∇xϕecp (13)

The ions of the electrolytic solution

In the present model we solve the continuity equation for the three ions α, with α =Na+,

Cl− and K+ along the ionic path, constituted by the continuum of the three domains Ωα =

{Ω1 ∪ Ωbis
2 ∪ Ω3}. A non trivial modification is performed on the Poisson-Nernst-Planck

model for the ionic transport to account for the presence of the proteinic cleft region, which

occupies the available volume in the interstitial region, inducing a repulsive current of ions

which flow towards the free volume regions, as reported in the previouos paragraph. Based

on the modified Poisson-Nernst-Planck model, we can write the continuity equation for the

electrolytic ions α as:
∂cα
∂t

+∇x · jα = 0 ∀(x, t) ∈ (Ωα × IT)

jα = −µα
zα
|zα|

cα

(
∂ψ

∂x
ex +

Vth

zαcα

∂cα
∂x

ex +
|zα|Vth

zαcp

∂cp

∂x
ex

)
∀(x, t) ∈ (Ωα × IT)

(14)

As far as it regards the boundary conditions, all electrolytic ions α fulfill analogous boundary

conditions. At the interface with the neuron, we enforce a Robin boundary condition on the

flux density:
jα · n1 = −j tm

α (x) at x = 0 ∀t ∈ IT (15)

This boundary condition describes the transmembrane coupling with the neuron, particularly

accounting for the ionic motion across the neuron membrane driven by electric and diffu-

sive gradients. The transmembrane molar flux density model adopted is that of Goldman-

Hodgkin-Katz [17], Ch.17 , which defines j tm
α for a generic ion α :

j tm
α (x) = −Pα

[
cα(x, t) B

(
zα

Vm

Vth

)
− c̄N

αB
(
−zα

Vm

Vth

)]
(16)

where Pα represents the neuron membrane permeability to each ion α, c̄N
α is the fixed con-

centration of the ions inside the neuron and Vm is the membrane potential of the neuron,

defined as the difference between the neuron and the extracellular electric potential ψex ,

namely Vm = ψN − ψex. In our model ψex coincides with the cleft potential ψ(x, t), with

x= 0.

The equilibrium potential of the neuron ψN, is derived from the evaluation of the equilibrium

membrane potential Veq
m , computed with the Goldman formula [17], Ch.17,

Veq
m = ψN − ψex = Vth ln

(
PK+cbulk

K+ + PNa+cbulk
Na+ + PCl−c

N
Cl−

PK+cN
K+ + PNa+cN

Na+ + PCl−c
bulk
Cl−

)
(17)

assuming ψex = 0:

Veq
m = ψN (18)
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B is the inverse of the Bernoulli function

B(Φ) :=
Φ

eΦ − 1
(19)

which satisfies the following properties:

• B(Φ) > 1 ∀Φ ∈ R

• B(0) = 1

• eΦB(Φ) = B(−Φ) = Φ + B(Φ)

The transmembrane molar flux density j tm
α is defined with a conventional direction of the

particle current which flows from the neuron towards the extracellular space. In our model,

we have the opposite perspective and this justifies the minus sign in eq. (20).

As far as it regards the behaviour of the ions at the extracellular endpoint x=W, we assume

their concentrations to be given and equal to those of the bulk extracellular medium. This

assumption is reasonable considering the reduced dimension of the NP compared to the

surrounding biological medium, which far from the NP cannot be altered.

cα = cbulk
α at x = W ∀t ∈ IT (20)

Here we do not enforce any boundary condition at x=R1 and x=R2 for the ions constituting

the extracellular medium, since we are solving them across a continuum domain Ωα

The superoxide

Besides the ions dissolved in the extracellular medium electrolyte, the superoxide O−2 ion is of

utmost importance in the characterization of the working principles of the retinal prosthesis.

In particular, it can affect both the electric polarization of the NP and of the surrounding

region, as well as induce a chemical effect due to its evolution into a ROS species, namely

hydrogen peroxide. Unlike the other ions, the superoxide is produced at the electrochemically

active interface of the NP and is available in solution at small equilibrium concentrations, of

the order of 1 nM. Due to its ability to either recombine into hydrogen peroxide and to sustain

an equilibrium condition concentration, we have introduced a bulk generation-recombination

phenomenon.

The superoxide ion equation is solved in a piecewise function, first in Ω1 and Ω3 to account

for the electrochemical effect of the NP and then in Ωbis
2 , assuming as interface conditions

the previously calculated concentrations at R1 and R2. The continuity equation for the O−2
reads:

∂cO−2

∂t
+∇x · jO−2

= G −R ∀(x, t) ∈ (Ω1 ∪Ωbis
2 ∪Ω3 × IT)

jO−2
= µO−2

cO−2

∂ψ

∂x
ex −DO−2

∂cO−2

∂x
ex ∀(x, t) ∈ (Ω1 ∪Ωbis

2 ∪Ω3 × IT)

(21)

Generation-recombination model In order to model the generation and recombination

term of the O−2 in the bulk of the electrolyte, we have chosen to utilize a net recombina-

6



tion/generation term with the following shape:

G −R = k1c
eq
O2

(
1−

cO−2

ceq

O−2

.

)
(22)

The functional shape has been approximated from the rate equations of the following reac-

tions:

O2 + e−
k1−→ O−2

2O−2 + 2H+ k2−→ H2O2 + O2

(23)

We assume the generation of O−2 in the bulk of the material to be secondary to the presence

of molecular oxygen in solution, which, with a certain probability dissociates into O−2 . This

phenomenon is supposed to be the one that maintains an equilibrium concentration of the

superoxide of no more than 1 nM. In competition with this phenomenon, we also observe the

evolution of superoxide into hydrogen peroxide. This phenomenon in a biological environment

may occur either spontaneously or favored by the superoxide dismutase enzyme [14]:

dcO−2

dt
= k1cO2

− k2cH+cO−2
(24)

The value of k2 is assumed to be an averaged value between the rate of spontaneous and

enzyme-driven dissociation, k2 = 8 · 105 mM−1s−1. In order to estimate the value of k1 we

have performed several approximations and modeling steps.

•
dcO−2

dt
= 0: when the biological system is at equilibrium, the superoxide concentration

can be considered as a constant value and its time evolution can be neglected. In this

condition, we can obtain an expression for k2 such as:

k2 =
k1c

eq
O2

ceq

O−2
ceq

H+

(25)

• from eq. (25) and knowing k2 = 8 · 105 mM−1s−1, we can assign to k1 the value

of 3 · 10−5 s−1, assuming the ionic equilibrium concentration equal to ceq

O−2
= 1 nM,

ceq

H+ = 103−pH mM, assuming a physiological pH of 7.4, and ceq
O2

= 1.04 mM, derived

from a partial pressure of oxygen in rats retinas of 20 mmHg, measured in Linsenmeier

and Zhang [9].

• We assume in our time (and then also in space) domain of the model that the con-

centration of molecular oxygen and of hydrogen coincide with their equilibrium values

cO2
:= ceq

O2
and cH+ := ceq

H+ .

Following this treatment, we can substitute the expression of eq. (25) into eq. (26) and

obtain:

dcO−2

dt
= k1c

eq
O2

(
1−

cO−2

ceq

O−2

.

)
(26)

This expression describes the time rate of change of the superoxide ion with respect to its

equilibrium concentration.
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Boundary and interface conditions At every time step, we enforce no-flux boundary con-

ditions at both endpoints, namely:

jO−2
· n1 = 0 at x = 0 ∀t ∈ IT

jO−2
· n3 = 0 at x = W ∀t ∈ IT

(27)

whereas at the interface we couple the superoxide interface production and recombination

to the fluxes of electrons exiting the NP and to the surface recombination of holes:

jO−2
· n1 =

JREC(x, t)

F
−

JMG(x, t)

F
at x = R1 ∀t ∈ IT

jO−2
· n3 =

JREC(x, t)

F
−

JMG(x, t)

F
at x = R2 ∀t ∈ IT

(28)

The hydrogen peroxide

The superoxide dynamic of eq. (23) predicts a reaction process leading towards the production

of H2O2: hydrogen peroxide is an important reactive oxygen species (ROS) and a precise

quantification of its dynamic and concentration may help shed light onto its possible role in

the coupling with the neuron. The evaluation of hydrogen peroxide is performed solely in

Ω1, where its concentration is relevant due to the proximity with the biological environment.

In order to provide this information with the model we have solved the following partial

differential equation for cH2O2
:

∂cH2O2

∂t
+∇x · jH2O2

= G(cO−2
)−R ∀(x, t) ∈ (Ω1×IT)

jH2O2
= −DH2O2

∂cH2O2

∂x
ex ∀(x, t) ∈ (Ω1×IT)

(29)

The drift term is neglected in the present transport equation since the molecule does not

show up a net charge and, therefore, is not affected by the presence of an electric field. At

the boundary of the cleft domain we suppose that the hydrogen peroxide cannot exit and we

enforce homogeneous Neumann condition of the form:

jH2O2
· n1 = 0 at x = 0,R1 ∀t ∈ IT (30)

Generation-recombination model Analogously to what has been done for the generation

and recombination term of cO−2
, we write the ordinary differential equation which describes

the behaviour of cH2O2
in time.

dcH2O2

dt
= k1

ceq
O2

ceq

O−2

cO−2
− khydcH2O2

(31)

The hydrogen peroxide concentration appears therefore to be linearly dependent from the

superoxide concentration cO−2
through the coefficient khyd. An estimation of this coefficient

is obtained with the following procedure:

•
dcH2O2

dt
= 0: when the biological system is in equilibrium, the hydrogen peroxide con-

centration can be considered as a constant value and its time evolution can be ne-
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glected. In this condition, we can obtain the expression for khyd such as:

khyd =
k1c

eq
O2

ceq
H2O2

(32)

where k1 has been determined in the previous paragraph and ceq
H2O2

= 1µM, an extra-

cellular value which is at the inferior limit to be negligible or partially induce Oxidative

Eustress [19].

• the time dependent model can be reasonably applied to every point x ∈ Ω1 and therefore

we can write:

G(cO−2
)−R = k1

ceq
O2

ceq

O−2

cO−2
− khydcH2O2

∀(x, t) ∈ (Ω1 × IT) (33)

Holes and electrons

The model for the P3HT material has been validated in the work Chiaravalli et al. [3] and is

used as a milestone in building up all the new features of the system mathematical represen-

tation. The time dependent equations for holes and electrons are solved solely in Ω2.
q
∂p

∂t
+∇x · Jp =q (G −R) ∀(x, t) ∈ (Ω2 × IT)

Jp = −qµpp
∂ψ

∂x
ex − qDp

∂p

∂x
ex ∀(x, t) ∈ (Ω2 × IT)

(34)


q
∂n

∂t
−∇x · Jn =q (G −R) ∀(x, t) ∈ (Ω2 × IT)

Jn = −qµnn
∂ψ

∂x
ex + qDn

∂n

∂x
ex ∀(x, t) ∈ (Ω2 × IT)

(35)

The generation and recombination terms have been characterized in details in [3]. The

functional shape of JMG and JREC are reported in [6], and are proportional to the available

concentration of O−2 , being in the present model cO−2
= cO−2

(x, t).

−Jn · n2 = JMG(x, t) at x = R1,R2 ∀t ∈ IT

Jp · n2 = JREC(x, t) at x = R1,R2 ∀t ∈ IT
(36)

Electric field and potential

The Poisson equation is solved in all Ω by solving the following system of equations:

∇x ·D = ρ ρ =


q (p − n) ∀(x, t) ∈ (Ω2 × IT)

q

(∑
α

zαcαNav + zO−2
cO−2

Nav

)
∀(x, t) ∈ (Ω1 ∪Ωbis

2 ∪Ω3 × IT)

(37)
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The dielectric constant is also defined as a piecewise constant function:

D = εE ε(x) =


εcl ∀x ∈ Ω1

εpol ∀x ∈ Ω2

εw ∀x ∈ Ωbis
2 ∪Ω3

(38)

The Poisson equation is first solved across the domain Ωnp := {Ω1 ∪Ω2 ∪Ω3}, enforcing at

the interface with Ω2, at x=R−1 ,R+
2 , the conditions which describe the capacitive coupling

with the NP:
D · n1 = cNP(ψ(R−1 )− ψ(R+

1 )) at x = R1 ∀t ∈ IT

D · n2 = cNP(ψ(R+
1 )− ψ(R−1 )) at x = R1 ∀t ∈ IT

D · n2 = cNP(ψ(R−2 )− ψ(R+
2 )) at x = R2 ∀t ∈ IT

D · n3 = cNP(ψ(R+
2 )− ψ(R−2 )) at x = R2 ∀t ∈ IT

(39)

At the endpoints of the domain we have instead two different situations. At x= 0 the model

experiences the interface with the neuron and the effect of the surface charge accumulated

on the membrane. The surface charge can be equivalently represented with the formula

σ = cs∆ψ, where cs is the specific capacitance [F m−2] and ∆ψ is the voltage difference

across the membrane. In our model, the specific capacitance is that of the neuron cellular

membrane cN
m and is multiplied by the potential difference across the membrane, ψN being

the potential of the neuron:

D · n1 = cN
m(ψ(x, t)− ψN) at x = 0 ∀t ∈ IT (40)

At x=W, instead, we again consider the bulk of the electrolyte to be an electro-neutral

region, which acts as a ground for the whole system.

ψ = 0 at x = W ∀t ∈ IT (41)

Once the potential is known across Ωnp, we recover the potential across Ωbis
2 by enforcing at

x=R+
1 ,R−2 as Dirichlet boundary conditions the potential values calculated at x=R−1 and at

x=R+
2 when solving the previous system of equations.

All the simulations reported in the following, unless differently specified, are performed as-

suming a physiological value of light intensity reaching the photoreceptors, namely 0.2 W m−2

[2], a radius of the NP of 150 nm and a cleft thickness of 30 nm (both in agreement with

Maya-Vetencourt et al. [12]) . All the other parameters are reported in [3] or in the present

table 1.
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Table 1: Parameters assumed full bio-hybrid model.

Parameters Units Value Source

I0 W m−2 0.2 [2]

kp m4 s−1 1 · 10−30 assumed

kt m4 s−1 1 · 10−30 [16]

cNP F m−2 7.45 [20]

cbulk
Na+ mM 108 [13]

cbulk
Cl−

mM 118 [13]

cbulk
K+ mM 10 [13]

cN
Na+ mM 5 adapted from [5]

cN
Cl−

mM 8 adapted from [5]

cN
K+ mM 110 adapted from [5]

DNa+ m2s−1 1.33 · 10−9 [13]

DCl− m2s−1 2.03 · 10−9 [13]

DK+ m2s−1 1.96 · 10−9 [13]

PNa+ ms−1 6 · 10−11 [4]

PCl− ms−1 1 · 10−9 [4]

PK+ ms−1 4 · 10−10 [4]

DO−2
m2s−1 0.21 · 10−9 [15]

cN
m F m−2 9 · 10−3 measured

ψN mV −58 computed with eq. (17)
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Figure 2: On the left we show a three-dimensional representation of a NP immersed in an external

medium, which is approximated with a parallelepiped, in cartesian coordinated, with light impinging

from the bottom. With dashed lines we highlight the axis of rotational symmetry exploited on the

right to reduce the problem into a 2D axial symmetric geometry. This reduction does not affect the

quality of the modeling, which is exactly equivalent to a 3D description, but allow a consistent saving

in terms of computational effort.

The 2D-axial symmetric model

This section aims at describing the polarization and the charge reorganization inside a three-

dimensional NP. The model accounts for a steady state description of the charge transport

and of the interfacial mechanisms occurring at the NP, with a coupled solution of the Poisson

equation, which is also solved into a neighbor environment. This version of the model aims

at the study of the three-dimensional mechanisms occurring in the NP, not focusing onto

the coupling mechanisms possibly occurring with the neuron.

The mathematical model

The present model comprises the drift diffusion model used to describe the NP physics

generalized in a multi-dimensional domain. The surrounding environment is modeled as an

empty space, characterized by a relative dielectric constant equal to εcl.

Neglecting electrolytic ions is a clearly a limitation of the model, which however mimics

the dielectric proteinic contribution introduced the previous section: modeling the protein

volume-filling contribution inside the transport equation of electrolytic ions effectively leads

to a cleft depleted of ions. Apriori neglecting the presence of ions in the environment can

therefore be seen as an effective simplified modeling of the dielectric nature of the cleft.

The geometrical framework of the problem is represented in fig. 2: due to the rotational

symmetry of the real geometrical system (fig. 2-left), we can reduce a three-dimensional

description into a 2D-axial symmetric ones, without losing generality nor accuracy in the
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description, but gaining in terms of computational effort.

Spatial domain

Fig. 2 shows a three-dimensional schematic representation of the bio-hybrid system. This

latter is composed of an NP (sphere, magenta color) and of a surrounding medium. The

yellow arrow represents the external light input source, which in this model is supposed to

arrive from the bottom of the domain. The rotational invariance of the system with respect to

the z axis, in dashed lines in the three-dimensional picture on the left, allows us to reduce the

3D structure (in a Cartesian reference system) to the 2D axial symmetric (2DAS) structure

depicted in the right panel of the figure, in r-z coordinate system. The computational domain

of our model is the 2DAS region Ω, which is the union of the NP subdomain Ω1 and of the

subdomain Ω2 of the surrounding medium. The boundary of Ω1 is ∂Ω1 = Γ5 ∪ Γint, whereas

the boundary of Ω2 is ∂Ω2 = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ6 ∪ Γint. We define the two dimensional

axial symmetric set of coordinates as x : {r, z}.

Holes and electrons

The mathematical model for holes and electrons is a multi-dimensional version of the one

reported in [3; 6]: 
∇x · Jp =q (G −R) ∀x ∈ Ω1

Jp = −qµpp∇xψ − qDp∇xp ∀x ∈ Ω1

(42)


−∇x · Jn =q (G −R) ∀x ∈ Ω1

Jn = −qµnn∇xψ + qDn∇xn ∀x ∈ Ω1

(43)

To close the PDE system, we must enforce conditions along the whole ∂Ω1. Along the

boundary coinciding with the symmetry axis Γ5, we impose a homogeneous Neumann condi-

tion, respectful of the symmetric nature of the border. It reads:

Jp · n1 = 0 ∀x ∈ Γ5

−Jn · n1 = 0 ∀x ∈ Γ5

(44)

Along the interface with the external environment, we impose the photo-cathodic boundary

conditions :
Jp · n1 = JREC(x) ∀x ∈ Γint

−Jn · n1 = JMG(x) ∀x ∈ Γint

(45)

Electric field and potential

The Poisson equation is solved in the whole Ω through the following system of equations:

∇x ·D = ρ ρ =

{
q (p − n) ∀x ∈ Ω1

0 ∀x ∈ Ω2

(46)
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The dielectric constant is also defined as a piecewise constant function, which in Ω2 may

assume different values depending on the specific modeling conditions which will be specified

for each simulation:

D = εE ε =

{
εpol ∀x ∈ Ω1

εw,cl ∀x ∈ Ω2

(47)

To close the Poisson PDE, we must enforce the boundary and interface condition. Similarly to

what has been done for holes, electrons and superoxide, we impose a homogeneous Neumann

BC along the symmetry axis. The same condition is also imposed on Γ1 and Γ3, whereas

the potential along Γ2 is clamped to zero, assuming an electro-neutral environment far away

from the NP:
D · n2 = 0 ∀x ∈ Γ1 ∪ Γ3 ∪ Γ4 ∪ Γ6

D · n1 = 0 ∀x ∈ Γ5

ψ(x) = 0 ∀x ∈ Γ2

(48)

As far as it regards the interface with the NP, we suppose the occurrence of an accumulation

of electrostatic charge, proportional to NP surface capacitance and to the potential difference

across the interface. In the following we call ψint
1 the electric potential at Γint defined in Ω1,

whereas ψint
2 the electric potential at the same interface, but in Ω2. Both ψint

1 and ψint
2 are

function of the spatial set of coordinates x, such that ψint
1 = ψint

1 (x), ψint
2 = ψint

2 (x)

D · n1 = cNP

(
ψint

1 (x)− ψint
2 (x)

)
∀x ∈ Γint ∈ Ω1

D · n2 = cNP

(
ψint

2 (x)− ψint
1 (x)

)
∀x ∈ Γint ∈ Ω2

(49)
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