Electronic Supplementary Information

Prediction of 2D group-11 chalcogenides: Insights into novel auxetic M₂X (M =

Cu, Ag, Au; X = S, Se, Te) monolayers

Yufei Xue#a, Lei Gao*#ab, Weina Rena, Xuxia Shaia, Tingting Weia, Chunhua Zeng*a,

Hua Wang*b

^a Institute of Physical and Engineering Science/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China

^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,

Kunming University of Science and Technology, Kunming 650093, Yunnan, China

[#] These authors contributed equally.

Corresponding Author: Lei Gao, email: lgao@kust.edu.cn; Chunhua Zeng, email: chzeng83@kust.edu.cn; Hua Wang, email: <u>wanghua65@163.com</u>

Figure S1. (a)-(i) Relative energies of each M_2X monolayer with different lattice parameters. Red represents the most energetically favorable structure.

Figure S2. (a)-(i) Strain energies of α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers with respect to various uniaxial strains along the x direction.

Figure S3. (a)-(i) Strain energies of α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers with respect to various equi-biaxial strains along the x and y directions.

Figure S4. (a)-(i) Strain energies of α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers with respect to various shear strains along the xy directions.

Figure S5. (a)-(i) Calculated orientation-dependent Poisson's ratio v(θ) of α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers, respectively.

Figure S6. (a)-(i) Calculated orientation-dependent Young's modulus Y(θ) of α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers, respectively.

ure S7. (a)-(i) Variation of transverse strains of α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers with respect to tensile strains along x direction. The pink and blue shaded regions represent positive Poisson's function (+PF) and negative Poisson's function (-PF), respectively.

Figure S8. (a) Top and side views of the α -Cu₂S monolayers. (b) The transverse strains of α -Cu₂S monolayers with S vacancy in tensile strains along the x direction. The pink shaded region corresponds to the positive Poisson's function (+PF).

Figure S9. Top and side views of the α -Cu₂S and α -Ag₂Te monolayers taken from ab initio molecular dynamic simulations carried out at 300 K for 2 ps.

Figure S10. Bond lengths (d_1 and d_2) and bond angle (θ) are indicated by red, dark blue, and light blue, respectively.

Figure S11. Variation of (a)-(b) bond lengths (d_1 and d_2), (c) bond angle (θ) and (d) thickness (h) of α -Cu₂Te monolayer. Bond lengths (d_1 and d_2) and bond angle (θ) are indicated in Fig. S10.

Figure S12. (a)-(f) Projected density of states of α -Cu₂S monolayer with +1%, +2%, +3%, +4%, +5%, and +6% tensile strains, respectively. The d/p orbitals of Cu/S are indicated by red/blue.

Figure S13. (a)Top view of α -Cu₂S monolayer. (b) Electron localization functions of α -Cu₂S with +1%,+3% and +6% tensile strains, respectively.

Figure S14. (a)-(f) Projected density of states of α -Cu₂Te monolayer with +1%, +2%, +3%, +4%, +5%, and +6% tensile strains, respectively. The d/p orbitals of Cu/Te are indicated by red/blue.

Figure S15. Mechanism of PPF for α -phase monolayers. The solid and dashed M-X bonds are initial and final configurations at each relaxation step, respectively. The dashed circles represent the movements of M and X atoms.

Table S1 Structural parameters (*a*, *b* and *h*) of the α -Cu₂S, α -Cu₂Se, α -Cu₂Te, β -Ag₂S, β -Ag₂Se, α -Ag₂Te, β -Au₂S, β -Au₂Se, and α -Au₂Te monolayers. *a* (*b*) and *h* are the lattice parameters, thickness of α -phase and β -phase monolayers, respectively.

Material	<i>a</i> (Å)	<i>b</i> (Å)	<i>h</i> (Å)
α -Cu ₂ S	5.02	5.02	2.55
α -Cu ₂ Se	4.99	4.99	3.00
α -Cu ₂ Te	4.99	4.99	3.52
β -Ag ₂ S	5.88	5.88	2.48
β-Ag ₂ Se	5.90	5.90	2.93
α-Ag ₂ Te	5.71	5.71	3.54
β -Au ₂ S	5.81	5.81	2.49
β -Au ₂ Se	5.82	5.82	2.95
α -Au ₂ Te	5.62	5.62	3.55

Strains	S1	S2	Cu
+1%	+0.621e	+0.621e	-0.312e
+3%	+0.628e	+0.628e	-0.318e
+6%	+0.645e	+0.645e	-0.323 <i>e</i>

Table S2 Bader analysis of α -Cu₂S monolayer with +1%, +3% and +6% tensile strains, respectively. S1, S2 and Cu atoms correspond to those of Fig. S13 (a).