Elephonie Stapple foremtation M(Ste) rfat (ES) site Physical Physical Cherostic Cherostic Cherostics Physics. This journal is © the Owner Societies 2023

This ESI replaces the previous version that was published on 6th November, 2023

Electronic Supplementary Information

The Nature of the Electronic Ground State of M₂C (M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes

Néstor García-Romeral, Ángel Morales-García,* Francesc Viñes, Ibério de P. R Moreira, Francesc Illas*

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain

*Corresponding author: <u>angel.morales@ub.edu</u>, <u>francesc.illas@ub.edu</u>

MXene	Q(C)	Q(M)
Ti ₂ C	-2.62 (-2.35)	1.31 (1.17)
Zr ₂ C	-2.44 (-2.16)	1.22 (1.08)
Hf ₂ C	-2.75 (-2.47)	1.37 (1.24)
V_2C	-2.22 (-2.04)	1.11 (1.02)
Nb ₂ C	-2.12 (1.92)	1.06 (0.96)
Ta ₂ C	-2.36 (-2.19)	1.18 (1.09)
Cr ₂ C	-1.84 (-1.66)	0.91 (0.83)
Mo ₂ C	-1.61 (-1.59)	0.80 (0.79)
W ₂ C	-1.57 (-1.43)	0.79 (0.72)

Table S1. Calculated HSE06 and PBE (in parenthesis) Bader charges (Q in a.u.) of metal and carbon atoms in M₂C (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) using plane waves.

Table S2. Energy of the FM solutions relative to the NM (or closed-shell) one (ΔE_{FM-NM} in meV) of p(1×1) unit cell of M2C (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) obtained from PBE, PBE0, and HSE06 functionals at the PBE optimized spin-polarized structures, as obtained with VASP and FHI-AIMS codes, the latter marked in italics. The negative sign indicates that the FM solution is more stable than the NM one. For diamagnetic MXenes the most stable FM solution is obtained by fixing the total number of unpaired electrons as described in the text.

MXene	PBE	PBE0	HSE06
Ti ₂ C ^a	-135	-488	-420
	-155	-506	-417
Zr ₂ C	-36	-339	-274
	20	-281	-197
Hf ₂ C	60	-191	-143
	79	-189	-105
V ₂ C ^b	769	151	128
	797	189	222
Nb ₂ C ^b	1462	1246	1220
	1497	1286	1301
Ta ₂ C ^b	2140	2134	2061
	2187	2174	2177
Cr ₂ C	-25	-1389	-1366
	-15	-1238	-1122
Mo ₂ C ^c	349	292	295
	395	324	330
W ₂ C ^c	812	883	841
	867	1013	956

^{*a*}The values of Ti₂C from Ref. 45 of the main text have been also included to draw a clear and a wide picture of the influence of the metal atoms in these systems.

^bSpin-polarized solution fixing two unpaired electrons per unit cell.

^cSpin-polarized solution fixing one unpaired electron per unit cell.

Table S3. Energy of several FM solutions relative to the NM one (ΔE_{FM-NM} in meV, respectively) of $p(1\times1)$ unit cell of paramagnetic Cr₂C and diamagnetic M₂C (M= Mo, and W) obtained from PBE, PBE0, and HSE06 functionals, at the PBE optimized spin-polarized structures for the corresponding GS, as obtained with VASP and FHI-AIMS codes, the latter marked in italics. These solutions have been estimated fixing the total net spin density per unit cell consistent with the Bader charges.

ΔE_{FM-NM}		
PBE	PBE0	HSE06
2236	-1320	-1268
2248	- <i>1218</i>	-1008
875	-1182	-1190
907	- <i>1098</i>	<i>-1011</i>
72	-77	-67
82	-45	-34
6644	4806	4886
6767	<i>4967</i>	<i>5171</i>
3222	2194	2224
<i>3277</i>	<i>2222</i>	2350
9118	7904	7875
9270	8190	<i>8395</i>
4534	3882	3839
<i>4639</i>	4051	4150
	2236 2248 875 907 72 82 6644 6767 3222 3277 9118 9270 4534	PBEPBE02236-13202248-1218875-1182907-109872-7782-4566444806676749673222219432772222911879049270819045343882

^aSpin polarized solution fixing a value of 4 unpaired electrons per unit cell.
^bSpin polarized solution fixing a value of 3 unpaired electrons per unit cell.
^cSpin polarized solution fixing a value of 1 unpaired electron per unit cell.

Table S4. Energy of AFM solutions relative to the FM one (ΔE_{AFM-FM} in meV) of p(1×1) unit cell of paramagnetic M₂C (M=Ti, Zr, Hf, and Cr) obtained from PBE, PBE0, and HSE06 functionals at the PBE optimized spin-polarized structures with (a) VASP and (b) FHI-AIMS codes. The negative sign indicates that the AFM solutions are more stable than the FM one.

MXene	PBE	PBE0	HSE06
Ti ₂ C ^a	-21	-99	-73
	-28	-103	-73
Zr ₂ C	-39	-90	-69
	0	-128	-83
Hf ₂ C	-63	-81	-60
	2	-89	-58
Cr ₂ C	45	-307	-263
	15	-425	-342

^{*a*}The values of Ti₂C from Ref. 45 of the main text have been also included to draw a clear and a wide picture of the influence of the metal atoms in these systems.

Fig. S1. (a) AFM, (b) FM, and (c) NM projected DOS (in states/eV) for Ti₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1 \times 1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S2. (a) FM and (b) NM projected DOS (in states/eV) for V₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1\times1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S3. (a) AFM, (b) FM, and (c) NM projected DOS (in states/eV) for Cr₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1 \times 1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S4. (a) AFM, (b) FM, and (c) NM projected DOS (in states/eV) for Zr₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1\times1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S5. (a) FM and (b) NM projected DOS (in states/eV) for Nb₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1\times1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S6. (a) FM and (b) NM projected DOS (in states/eV) for Mo₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1\times1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S7. (a) AFM, (b) FM, and (c) NM projected DOS (in states/eV) for Hf₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1 \times 1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S8. (a) FM and (b) NM projected DOS (in states/eV) for Ta₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1\times1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S9. (a) FM and (b) NM projected DOS (in states/eV) for W₂C as obtained from calculations with the HSE06 functional at the PBE optimized $p(1\times1)$ unit cell. The energy is referenced to the Fermi level (in eV).

Fig. S10. Phonon dispersion of diamagnetic (left) and paramagnetic (right) solutions of Ti₂C as predicted from the calculations with the PBE functional.