Supporting information for

Experimental Phase Diagram and Its Temporal Evolution for Submicron 2-Methylglutaric Acid and Ammonium Sulfate Aerosol Particles

Qishen Huang, Kiran R. Pitta, Kayla Constantini, Emily-Jean E. Ott, Andreas Zuend, Miriam Arak Freedman*

Summary: The content of this supporting information includes the size distribution of submicron 2MGA+AS particles, example optical images of micrometer droplets at different RH values, the measured ERH of submicron inorganic aerosol particles and literature values $\left(\mathrm{KCl}, \mathrm{K}_{2} \mathrm{SO}_{4}\right)$, and the AIOMFAC prediction of the viscosity of 2MGA+AS aerosols.

Experimental Methods

Supplementary Figures and Tables

Figure S1. Size distribution of $2 M G A+A S$ aerosols $\left(m f_{d}(A S)=0.33\right)$. The images were collected using a diffusion dryer coupled with cryo-TEM. LLPS is inhibited for particles smaller than 30 $n m$.

Figure S2. Example optical images of micrometer droplets $\left(m f_{d}(A S)=0.5\right)$, at different $R H$ conditions. The labels under the images denote different phase states of droplets. Scale bar $=2$ μm.

Table S1. The ERH of KCl and $\mathrm{K}_{2} \mathrm{SO}_{4}$ measured in this study experimentally and measured in the literature by Morris et al. ${ }^{1}$ The temperature of this study was $297 \pm 1 \mathrm{~K}$, which is overall consistent with Morris et al with variation in temperature about 1 K .

Composition	Experimental ERH (\%)	Literature value(\%)
$\mathbf{K C l}$	56 ± 1	56 ± 2
$\mathbf{K}_{2} \mathbf{S O}_{4}$	59 ± 1	60 ± 1

Table S2. The estimated viscosity of $2 M G A+A S$ aerosol particles with various compositions at $\sim 78 \%$ RH and 298 K . The 78% RH is close to the SRH of micrometer-sized $2 M G A+A S$ aerosol particles.

$\mathbf{m f}_{\mathbf{d}}(\mathbf{A S})$	$\mathbf{R H}$	$\boldsymbol{\operatorname { l o g }}_{\mathbf{1 0}}(\mathbf{\eta}(\mathbf{P a} \cdot \mathbf{S}) \mathbf{)}$
0.10	78.33	-1.612
0.20	78.29	-1.811
0.33	78.50	-2.014
0.50	78.68	-2.172
0.80	78.50	-2.385
0.90	78.34	-2.470

References:

1 H. S. Morris, A. D. Estillore, O. Laskina, V. H. Grassian and A. V. Tivanski, Anal. Chem., 2016, 88, 3647-3654.

