Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

Reinvestigation of the Internal Glycan Rearrangement of Lewis a and Blood Group Type 1 Epitopes

Vasilis Kontodimas,[†] Murat Yaman,^{†,¶} Kim Greis,^{‡,§} Maike Lettow,^{‡,§} Kevin Pagel,^{‡,§} and Mateusz Marianski^{*,†,¶}

†Department of Chemistry, Hunter College, The City University of New York, 695 Park Ave, New York, NY 10065, USA

‡Fritz-Haber-Intitut der Max Planck Gesellschaft

¶PhD Programs in Chemistry and Biochemistry, The Graduate Center, The City University of New York, 365th Ave, New York, NY 10016, USA

§Institute of Chemistry and Biochemistry, Freie Universität Berlin

Table of Contents:

1.	Number of unique conformers at each step	2
2.	Benchmarks	3
3.	Ring Puckering and distribution of glycosidic bonds	5
4.	CCS vs Free energies	.19
5.	Simulated anharmonic spectra of 18 low-free energy conformers	.23
6.	Vibrational assignment of the 18 low-energy conformers	.26
7.	XYZ-coordinates of 18 low-energy conformers	.44

Bond Configuration	Search 1	Search 2	Combined
Fuc_a12a	64	69	37
Fuc_a12b	36	35	23
Fuc_a13a	39	63	59
Fuc_a13b	33	33	29
Fuc_a14a	62	20	34
Fuc_a14b	47	39	48
Fuc_a16a	23	51	30
Fuc_a16b	39	40	40
Fuc_an12a	54	62	46
Fuc_an12b	49	74	45
Fuc_an14a	85	34	70
Fuc_an14b	23	27	11
Fuc_an16a	37	87	74
Fuc_an16b	32	31	28
Fuc_b12a	79	77	109
Fuc_b12b	24	13	19
Fuc_b13a	45	28	45
Fuc_b13b	54	63	64
Fuc_b14a	13	24	20
Fuc_b14b	19	17	18
Fuc_b16a	22	18	15
Fuc_b16b	58	52	58
Fuc_bn12a	96	88	96
Fuc_bn12b	109	87	112
Fuc_bn14a	19	23	19
Fuc_bn14b	73	54	67
Fuc_bn16a	65	87	116
Fuc_bn16b	82	142	150

Table S1: Unique Conformers after CREST search. The highlighted rows indicate conformers that

 increased number of unique structures after the second search.

Table S2: Summary of the number of the individual DFT optimizations in 6-31+G(d,p) basis set (small basis, **SB**), and optimizations + frequency calculations in 6-311+G(d,p) basis set (large basis, **LB**).

Anomer		alpha			beta				
Bond co	onfiguration	alp	alpha beta		alpha		beta		
Fuc Bond		SB	LB	SB	LB	SB	LB	SB	LB
1-2	GIcNAc	46	13	96	22	45	9	112	11
1-4	GIcNAc	70	28	19	13	11	6	67	30
1-6	GIcNAc	74	37	116	35	28	18	150	41
1-2	Gal	37	15	109	66	23	13	19	8
1-3	Gal	58	25	45	23	29	13	64	30
1-4	Gal	34	17	20	9	48	23	18	7
1-6	Gal	30	14	15	7	37	15	58	34
Sum		497	193	420	175	221	97	488	161

Table S3: Benchmark results of most stable conformers of eight molecule's relative free energies based on several functionals with the Mean Absolute Error (MAE) values.

	a12a	a16a	an14a	bn16a	a12b	a16b	an14b	bn16b	MAE
B3LYP	6.1	6.5	4.6	4.3	5.2	0.0	4.3	7.6	4.8
B3LYP+D3	0.5	0.6	0.6	0.5	0.7	0.0	0.5	0.7	0.5
PBE1PBE	4.0	4.3	3.1	2.8	3.6	0.0	3.2	5.3	3.3
PBE1PBE+D3	0.4	0.4	0.5	0.0	0.7	0.0	0.6	0.1	0.3
M062x	0.9	0.3	0.5	0.2	0.8	0.0	0.1	0.4	0.4
M06	1.5	1.4	1.8	0.6	1.6	0.0	0.4	1.1	1.0
wB97XD	1.0	1.0	0.6	1.3	0.9	0.0	0.2	1.3	0.8
HSEH1PBE	3.8	3.9	3.0	2.5	3.6	0.0	3.0	5.2	3.1
X3LYP	5.4	5.7	4.0	3.8	4.7	0.0	3.8	6.8	4.3
M11	2.8	1.8	1.8	2.0	2.1	0.0	0.8	3.2	1.8
MN15	2.9	0.7	1.8	0.8	2.2	0.0	0.4	2.1	1.4
CAM-B3LYP	4.1	4.2	2.8	2.5	3.5	0.0	2.8	5.2	3.1

Figure S1: DLPNO/CBS(3,4) energies on x-axis, compared with PBE0+D3/6-31+G(d,p) and PBE0+D3/6-311+G(d,p) energies on y-axis for glucose, respectively. The relative energies (in kcal/mol) are calculated with respect to the lowest-energy conformer. The mean absolute error (MAE) between the two data sets, which includes a shift along the y-axis, is shown above.

Figure S2: DLPNO/CBS(3,4) energies on x-axis, compared with PBE0+D3/6-31+G(d,p) and PBE0+D3/6-311+G(d,p) energies on y-axis for α -maltose, respectively. The relative energies (in kcal/mol) are calculated with respect to the lowest-energy conformer. The mean absolute error (MAE) between the two data sets, which includes a shift along the y-axis, is shown above.

conformer of Fuca(1 \rightarrow 6)Gal β (1 \rightarrow 3)GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) level of theory. The left plot Fuc and Gal bond angles between each monomer. The b13 angle corresponds to the bond between GlcNAc and Gal, while the a12 angle represents the bond between while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) The plots illustrate the distributions of the two glycosidic displays the α -anomer, while the right plot shows the β -anomer. The top portion of each plot indicates the relative energy of the lowest energy conformer (ΔE) Figure S3: (Top) A comparison is made between the individual ring puckers of the [BG-H1+H]+ ions and their relative energy with respect to the lowest energy

distributions of the two glycosidic bond angles between each monomer. The b13 angle corresponds to the bond between GlcNAc and Gal, while the a14 angle represents the bond between Fuc and Gal. energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) The plots illustrate the theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the lowest to the lowest energy conformer of Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) level of Figure S5: (Top) A comparison is made between the individual ring puckers of the Fuc $\alpha(1 \rightarrow 4)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc ions and their relative energy with respect

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and a12 to the bond between Fuc and GIcNAc lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) Figure S7: (Top) A comparison is made between the individual ring puckers of the Gal $\beta(1 \rightarrow 3)$ [Fuc $\alpha(1 \rightarrow 2)$]GlcNAc ions and their relative energy with Ψ -180 -120 -60 -120 ģ -0 0 6 120 teo 180 120 ģ 0 -180 -120 -60 0 0 8 88 120 180 0.0 Ψ -180 -120 ģ 0 -180 -120 -60 b θ 60 120 180 -180 120 ģ 0 -180 -120 -60 ò 0 0 Ð. 933 8 120 180 0.0

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b12 to the bond between Fuc and Gal. level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuca(1 \rightarrow 6)Gal β (1 \rightarrow 3)GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) Figure S10: (Top) A comparison is made between the individual ring puckers of the Fuc $\beta(1 \rightarrow 2)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc ions and their relative energy with lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b13 to the bond between Fuc and Gal. lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two **Figure S11:** (Top) A comparison is made between the individual ring puckers of the Fuc $\beta(1 \rightarrow 3)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc ions and their relative energy with level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuc α (1 ightarrow 6)Gal β (1 ightarrow 3)GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p)

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b14 to the bond between Fuc and Gal. lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) Figure S12: (Top) A comparison is made between the individual ring puckers of the Fuc $\beta(1 \rightarrow 4)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc ions and their relative energy with

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b16 to the bond between Fuc and Gal. lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) Figure S13: (Top) A comparison is made between the individual ring puckers of the Fuc $\beta(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc ions and their relative energy with

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b12 to the bond between Fuc and lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) Figure S14: (Top) A comparison is made between the individual ring puckers of the Gal $\beta(1 \rightarrow 3)$ [Fuc $\beta(1 \rightarrow 2)$]GlcNAc ions and their relative energy with

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b14 to the bond between Fuc and lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the Figure S15: (Top) A comparison is made between the individual ring puckers of the Gal $\beta(1 \rightarrow 3)$ [Fuc $\beta(1 \rightarrow 4)$]GlcNAc ions and their relative energy with respect to the lowest energy conformer of Fuc α (1 ightarrow 6)Gal β (1 ightarrow 3)GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p)

glycosidic bonds angles between each monomer. The b13 corresponds to the bond between the GlcNAc and Gal, and b16 to the bond between Fuc and lowest energy conformer (ΔE), while the ΔF value represents the free energy of the ions after higher level theory calculations. (Bottom) Distributions of the two level of theory. The left plot displays the α-anomer, while the right plot shows the β-anomer. The top portion of each plot indicates the relative energy of the respect to the lowest energy conformer of Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β ions. The energy calculations were performed using the PBE0+D3/6-31+(d,p) **Figure S16:** (Top) A comparison is made between the individual ring puckers of the Gal $\beta(1 \rightarrow 3)$ [Fuc $\beta(1 \rightarrow 6)$]GlcNAc ions and their relative energy with

using SNFG notation above the plots. The y-axis shows the free energy relatively to the lowest free energy conformer of the Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β 2)Gal $\beta(1 \rightarrow 3)$ GlcNAc, Fuc $\beta(1 \rightarrow 2)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc, Gal $\beta(1 \rightarrow 3)$ [Fuc $\alpha(1 \rightarrow 2)$]GlcNAc, Gal $\beta(1 \rightarrow 3)$ [Fuc $\alpha(1 \rightarrow 2)$]GlcNAc. The glycan is shown Figure S17: The ^{PA}CCS vs. relative free-energy in a larger 6-311+G(d,p) basis set, evaluated at 300 K of both anomers of ions of respectively: Fuca(1 \rightarrow ion. The dashed line represents the experimental $^{DT}CCS_{He}$. The conformers highlighted with dark blue represent α and light blue β anomers.

using SNFG notation above the plots. The y-axis shows the free energy relatively to the lowest free energy conformer of the Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β 4)Gal $\beta(1 \rightarrow 3)$ GlcNAc, Fuc $\beta(1 \rightarrow 4)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc, Gal $\beta(1 \rightarrow 3)$ [Fuc $\alpha(1 \rightarrow 4)$]GlcNAc, Gal $\beta(1 \rightarrow 3)$ [Fuc $\alpha(1 \rightarrow 4)$]GlcNAc. The glycan is shown Figure S19: The ^{PA}CCS vs. relative free-energy in a larger 6-311+G(d,p) basis set, evaluated at 300 K of both anomers of ions of respectively: Fuca(1 \rightarrow ion. The dashed line represents the experimental $^{DT}CCS_{He}$. The conformers highlighted with dark blue represent α and light blue β anomers.

 $6) Gal\beta(1 \rightarrow 3) GlcNAc, Fuc\beta (1 \rightarrow 6) Gal\beta(1 \rightarrow 3) GlcNAc, Gal\beta(1 \rightarrow 3) [Fuc\alpha(1 \rightarrow 6)] GlcNAc, Gal\beta(1 \rightarrow 4) [Fuc\alpha(1 \rightarrow 6)] GlcNAc$. The glycan is shown using SNFG notation above the plots. The y-axis shows the free energy relatively to the lowest free energy conformer of the Fuc $\alpha(1 \rightarrow 6)$ Gal $\beta(1 \rightarrow 3)$ GlcNAc β Figure S20: The ^{PA}CCS vs. relative free-energy in a larger 6-311+G(d,p) basis set, evaluated at 300 K of both anomers of ions of respectively: Fuca(1 \rightarrow ion. The dashed line represents the experimental DT CCS_{He}. The conformers highlighted with dark blue represent α and light blue β anomers.

Figure S21: Simulated vibrational spectra of the lowest-free energy conformers of [BG-H1+H]⁺ ions. (A) and (²A) represent the most stable and second most stable conformers of alpha anomers respectively. The (A') and (²A'), represent beta anomers of the same ions above. All spectra are compared to the experimental IR spectrum of [BG-H1+H]⁺ (Top spectrum). The disconnected experimental line indicates two regions where a different laser power was used. The spectra between 1000-1250 cm⁻¹ is computed using anharmonic corrections, while the amide I band is calculated using harmonic vibrations. ΔF indicates relative free energy with respect to the global minimum (in kcal mol⁻¹), and ΔC indicates a difference in CCS from experimental value of 144 Å².

Figure S22: Simulated vibrational spectra of the lowest-free energy conformers of $[Le^a+H]^+$ ions. (B) and (²B) represent the most stable and second most stable conformers of alpha anomers respectively. The (B') and (²B') represent beta anomers of the ions following. All spectra are compared to the experimental IR spectrum of $[Le^a+H]^+$ (Top spectrum). The disconnected experimental line indicates two regions where a different laser power was used. The spectra between 1000-1250 cm⁻¹ is computed using anharmonic corrections, while the amide I band is calculated using harmonic vibrations. ΔF indicates relative free energy with respect to the global minimum (in kcal mol⁻¹), and ΔC indicates a difference in CCS from experimental value of 144 Å².

Figure S23: Simulated vibrational spectra of the lowest-free energy conformers of $[a16+H]^+$ ions. (C) and (²C) represent the most stable and second most stable conformers of alpha anomers respectively. (C') represents the most stable beta anomers of the same ions above. All spectra are compared to the experimental IR spectrum of $[Le^a+H]^+$ (Top spectrum). The disconnected experimental line indicates two regions where a different laser power was used. The spectra between 1000-1250 cm⁻¹ is computed using anharmonic corrections, while the amide I band is calculated using harmonic vibrations. ΔF indicates relative free energy with respect to the global minimum (in kcal mol⁻¹), and ΔC indicates a difference in CCS from experimental value of 144 Å².

Figure S24: Simulated vibrational spectra of the lowest-free energy conformers of [an16+H]⁺ ions. (D) and (²D) represent the most stable and second most stable conformers of alpha anomers respectively. (D') and (²D'), represent the most stable beta anomers of the same ion. All spectra are compared to the experimental IR spectrum of [Le^a+H]⁺ (Top spectrum). The disconnected experimental line indicates two regions where a different laser power was used. The spectra between 1000-1250 cm⁻¹ is computed using anharmonic corrections, while the amide I band is calculated using harmonic vibrations. Δ F indicates relative free energy with respect to the global minimum (in kcal mol⁻¹), and Δ C indicates a difference in CCS from experimental value of 144 Å².

Figure S25: Simulated vibrational spectra of the lowest-free energy conformers of [an16+H]⁺ ions. (E) and (²E) represent the most stable and second most stable conformers of alpha anomers respectively. (E) represents the most stable beta anomer of the same ion. All spectra are compared to the experimental IR spectrum of [Le^a+H]⁺ (Top spectrum). The disconnected experimental line indicates two regions where a different laser power was used. The spectra between 1000-1250 cm⁻¹ is computed using anharmonic corrections, while the amide I band is calculated using harmonic vibrations. ΔF indicates relative free energy with respect to the global minimum (in kcal mol⁻¹), and ΔC indicates a difference in CCS from experimental value of 144 Å².

Fable S4: Vibrational m	able S4: Vibrational mode assignment of [α-BG-H1+H] ⁺ ion (A)							
Harmonic Vib	Anharmonic Vib	Intensity	Assignment					
965.20	945.29	2.87E-03	β(CCH), β(CCO)					
972.76	948.69	4.91E-03	β(ССН), β(ССО)					
989.59	976.05	2.54E-02	β(ССН), β(ССО)					
997.63	985.25	8.75E-02	vs(COC) in glycosidic linkage, β(COH)					
1004.80	984.95	2.98E-03	vs(COC) in glycosidic linkage, β (COH)					
1018.50	1006.80	1.04E-01	Bending H+ on Acetyl Oxygen					
1032.83	1017.89	1.64E-01	β(COH), v(CC)					
1045.38	1027.10	1.04E-01	v(CC),v(CO)					
1047.55	1048.11	3.52E-01	ν(CO), ν(CC), β(COH)					
1059.64	1050.72	7.18E-02	v(CC), v(CO), в(COH)					
1069.27	1068.14	2.36E-01	в(СН2)					
1073.48	1061.62	2.32E-01	ν(COC) in glycosidic linkage,β(CO), ν(COH), β(CH)					
1088.65	1074.97	6.20E-02	γ(CH2), ν(CC), ν(CN)					
1094.01	1079.67	1.05E-01	v(CC), v(CO), в(COH)					
1099.88	1085.34	2.95E-01	v(CC), v(CO), в(COH)					
1106.83	1075.72	2.13E-01	γ(CH2), ν(CC), ν(CN)					
1110.24	1106.84	3.82E-01	v(CO), ring def.??					
1119.63	1103.83	1.27E-01	v(CC),v(CO)					
1123.86	1108.14	1.77E-02	v(CC),v(CO)					
1128.38	1114.42	4.42E-01	ν(CC),ν(CO), ν(CC), β(COH)					
1130.07	1116.76	1.21E-01	ν(COC) in glycosidic linkage, β(CO), ν(COH), β(CH)					
1132.43	1116.41	1.33E-01	β(CO), ν(COH), β(CH)					
1138.24	1069.43	1.80E-01	???					
1146.81	1128.23	3.98E-03	ν(CC),ν(CO), β(CH)					
1147.97	1129.58	6.16E-01	v(CC),v(CO)					
1152.85	1123.82	6.00E-03	β(COH), v(CC)					
1153.26	1136.80	2.31E-01	β(СОН), β(НС:СН), β(СС)					
1157.84	1140.54	2.28E-01	β(СОН), β(НС:СН), β(СС)					
1164.94	1156.18	3.54E-02	v(CC),v(CO)					
1166.85	1161.02	3.63E-02	v(CC),v(CO)					
1175.99	1154.45	3.86E-03	β(CO), ν(COH), β(CH)					
1187.51	1174.19	1.64E-03	v(COC) in glycosidic linkage,β(CO), v(COH), β(CH)					
1204.24	1190.71	9.85E-01	v(CC),v(CO)					
1205.00	1238.87	1.86E-02	β(COH)					
1212.49	1205.81	5.75E-02	β(CO), ν(COH), β(CH)					
1219.09	1196.57	1.39E-01	ν(CO), β(COH), β(CH)					
1220.15	1214.19	2.78E-02	ν(CO), β(COH), β(CH)					
1240.05	1225.19	3.93E-04	ν(CO), β(COH), β(CH)					
1245.72	1228.85	1.02E-03	β(COH), β(CC)					
1250.99	1240.20	4.29E-02	β(COH), β(CC)					
1254.11	1221.05	3.63E-03	β (COH), τ (CH), δ (CC)					
1269.48	1249.16	5.98E-03	β(COH), τ(CH2)					
1271.05	1248.03	1.28E-02	В(СОН), В(СН)					
12/5.44	1252.57	1.00E-01						
1281.09	1262.01	2.95E-01						
1291.68	1259.37	4.22E-U2	ρ(LUH), β(LH)					

v-stretching, twisting soring, t ıy, Y ŀ ıy,

Table S5 Vibrational mode assignment of [α-BG-H1+H]⁺ ion (²A):

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
965.36	942.148	3.10E-04	β (CH2), Bending H+ on Acetyl Oxygen
973.13	940.3	6.40E-05	Bending H+ on Acetyl Oxygen, β (CCH), β (CCO)
984.62	970.503	1.45E-04	β (HCCH), β (CH3)
999.17	985.593	5.57E-04	β (HCCH), β (CH3)
1013.47	1006.56	2.23E-03	Bending H+ on Acetyl Oxygen, β (CH3)
1023.06	1019.76	1.88E-03	τ(CH3), Bending H+ on Acetyl Oxygen
1023.55	1007.11	3.66E-03	δ(HCCH), τ(CH3)
1040.58	1013.10	2.88E-03	Bending H+ on Acetyl Oxygen, β (CH3), δ (HCOH)
1045.60	1020.69	7.53E-03	Bending H+ on Acetyl Oxygen, β (CH3), δ (HCOH)
1055.23	1046.32	6.31E-04	β (CH3), δ (HCOH), v(CC), v(CO)
1059.46	1033.97	2.22E-03	Bending H+ on Acetyl Oxygen, β (CH3)
1071.80	1059.76	4.35E-04	β (CH3), δ (HCOH), v(CC), v(CO)
1082.31	1070.89	6.12E-04	δ (HCOH), v(CC), v(CO)
1090.62	1070.97	6.21E-04	Bending H+ on Acetyl Oxygen, β(CH3), δ(HCOH), v(CC), v(CO)
1101.33	1090.10	1.26E-02	δ (HCOH), δ (HCCH), v(CC), v(CO)
1102.15	1088.55	1.67E-04	δ (HCOH), δ (HCCH), v(CC), v(H2C:OH)
1110.36	1096.83	8.83E-04	δ(HCOH), v(CN), v(CO), τ(CH3)
1117.41	1106.86	4.24E-05	Bending H+ on Acetyl Oxygen, δ (HCOH), v(CN), v(CO), τ (CH3)
1117.84	1104.98	9.40E-04	Bending H+ on Acetyl Oxygen, δ (HCOH), v(CO), τ (CH3)
1125.56	1111.54	1.01E-03	vas(COC) in glycosidic linkage, vas(COC), v(CO), δ (HCCH), β (CO)
1129.03	1117.31	3.81E-04	β (CH3), δ (HCCH), , δ (HCOH)
1132.16	1119.34	2.60E-04	vas(COC) in glycosidic linkage, δ (HCCH), , δ (HCOH)
1138.40	1127.88	4.54E-04	τ (HCCH), β (CH2), δ (HCOH)
1141.08	1125.28	4.51E-04	vas(COC) in glycosidic linkage, vas(COC), v(CO), δ (HCCH), β (CO)
1146.22	1129.87	4.30E-05	vas(COC) in glycosidic linkage, vas(COC), v(CO), v(CC)
1149.50	1133.89	1.63E-06	$v(COC)$ in glycosidic linkage, $v(CO)$, $\delta(HCOH)$, $\delta(HCCH)$
1158.59	1145.23	2.10E-04	ν(CO), ν(CC), δ(HCOH)
1163.62	1163.24	1.89E-04	τ (HCCH), β (CH2), δ (HCOH)
1168.58	1150.46	1.96E-04	τ (HCCH), β (CH2), δ (HCOH), ν (CO)
1173.39	1154.01	5.99E-05	δ (HCOH), v(CO), vas(COC), v(CN)
1175.46	1151.77	1.29E-05	δ (HCOH), v(CO), v(CCC), τ (CH2)
1179.41	1155.86	9.36E-04	δ (HCOH), v(CO), vas(COC), v(CCC)
1188.24	1173.67	2.54E-03	vas(COC) in glycosidic linkage, vas(COC), v(CO), δ (HCCH), β (CH3)
1197.23	1181.40	9.29E-05	vas(COC) in glycosidic linkage, δ (HCCH), δ (HCOH)
1209.08	1201.93	1.44E-04	δ (HCCH), δ (HCOH)
1213.33	1204.42	4.71E-05	vas(COC) in glycosidic linkage, δ (HCCH), δ (HCOH)
1221.75	1211.33	1.29E-04	δ (HCCH), δ (HCOH), β (CH3)
1240.15	1226.32	5.23E-04	δ(HCCH), δ(HCOH), τ(CH2)
1242.60	1230.08	5.61E-04	δ(HCCH), δ(HCOH), τ(CH2)
1250.23	1235.96	4.79E-03	δ (HCCH), δ (HCOH), τ (CH2)
1258.41	1228.81	9.43E-04	δ (HCCH), δ (HCOH), τ (CH2)
1265.36	1247.23	1.51E-03	δ (HCOH), δ (HCNH), τ (CH2)
1273.73	1246.21	1.39E-04	δ(HCCH), δ(HCOH), τ(CH2)
1278.84	1250.58	4.45E-04	δ(HCCH), δ(HCOH)
1289.77	1261.18	4.55E-03	δ(HCCH), δ(HCOH), δ(HCNH)
1304.21	1269.34	2.49E-04	$\delta(\text{HCCH}), \delta(\text{HCOH}), \tau(\text{CH2})$

Table S6: Vibrational mode assignment	of [β-BG-H1+H] ⁺ ion (A'):

			- /-
Harmonic Vib	Anharmonic Vib	Intensity	Assignment
966.63	915.28	4.33E-03	β(CCH), β(CCO), β(CNH)
975.60	931.39	2.43E-03	β(CCH), β(CCO), β(CNH)
989.48	974.55	8.12E-02	β(ССН), β(ССО)
998.13	983.43	1.45E-01	vs(COC) in glycosidic linkage, β (COH)
1009.84	987.99	4.55E-02	vs(COC) in glycosidic linkage, β(COH)
1019.68	1006.09	4.79E-02	β(СО), β (СН)
1033.85	1019.02	5.19E-02	β(СО), β (СН)
1041.27	1036.61	9.54E-03	β(CO) <i>,</i> β (CH)
1045.44	1025.39	6.73E-02	ν(CO), ν(CC), β(COH)
1059.48	1043.80	1.29E-01	β(CO) <i>,</i> β (CH)
1069.76	1062.56	3.23E-01	τ(CH2)
1070.53	1059.20	5.70E-01	τ(CH2), β(CCO), ν(CO)
1089.59	1075.38	3.51E-02	ν(CN), β(CCH), β(CCO), γ(CH2)
1093.89	1077.32	1.22E-01	vas(COC) in glycosidic linkage, β(COH)
1100.88	1084.79	6.84E-01	β(CCH), β(CCO),γ(CH2), ν(CN)
1110.39	1090.94	1.47E-02	ν(CC), β(CO), β(CH)
1111.27	1100.57	2.99E-01	vs(COC) in glycosidic linkage, β(COH), β(CH)
1112.91	1104.33	4.15E-02	vs(COC) in glycosidic linkage, β(COH), β(CH)
1125.02	1108.80	1.31E-01	β(CO) <i>,</i> β (CH)
1128.86	1115.63	1.10E-02	β(CO) <i>,</i> β (CH)
1129.72	1116.45	8.39E-02	β(СО), β (СН)
1130.37	1115.48	6.37E-02	ν(CC), β(CO), β(CH)
1139.07	1112.52	1.30E-02	β(СО), β(СН)
1145.26	1116.90	7.04E-02	v(CO), β(CO), τ(CH2)
1150.75	1133.09	3.96E-01	v(CO), β(CO)
1152.97	1134.96	4.53E-02	β(СО), β(СН)
1157.28	1136.91	3.78E-01	β(СО), β(СН)
1161.23	1080.84	3.17E-01	Bending H+ on Acetyl Oxygen
1165.73	1143.32	1.33E-01	ν(CC), β(CO), β(CH)
1175.21	1152.74	5.84E-01	v(CO), β(CO)
1180.59	1163.32	1.32E-02	ν(CC), β(CO), β(CH)
1192.03	1180.82	7.70E-02	vas(COC) in glycosidic linkage, β(COH), β(CH)
1198.94	1183.00	1.35E-01	vas(COC) in glycosidic linkage, β(COH), β(CH)
1208.44	1199.68	9.85E-01	Bending H+ on Acetyl Oxygen, v(CO), β(CO)
1211.21	1194.50	7.75E-02	β(СО), β(СН)
1215.49	1227.21	4.27E-01	β(СО), β(СН)
1236.94	1224.03	8.42E-04	β(СО), β(СН)
1247.04	1239.19	2.27E-02	β(СО), β(СН)
1249.05	1231.88	1.09E-02	β(СО), β(СН)
1252.66	1236.01	1.34E-01	β(СО), β(СН)
1253.98	1225.58	1.16E-03	β(CO), τ(CH2)
1271.97	1241.07	1.09E-02	β(СО), β(СН)
1274.59	1248.28	1.98E-02	β(CO), τ(CH2), β(CH)
1283.39	1262.25	3.37E-02	β(CO), τ(CH2), β(CH)
1290.01	1260.39	1.04E-01	β(CO), τ(CH2), β(CH)
1301.49	1265.62	5.28E-02	β(CO), β(CH)

Table S7: Vibrational mode assignment of [β-BG-H1+H]⁺ (²A'):

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
985.27	928.78	1.03E-03	β(NH)
989.22	965.42	5.26E-05	β (NH), β (HCCH)
1000.90	979.40	3.07E-03	β (NH), β (HCCH), β (HCOH)
1005.75	983.78	1.53E-04	β (NH), β (HCCH), β (HCOH)
1016.18	994.03	4.28E-04	Bending H+ on Acetyl Oxygen, δ(HCOH), ν(CO)
1019.28	1006.41	2.27E-03	β (CH3), β (HCCH)
1026.69	1017.27	3.88E-04	τ(CH3)
1052.54	1030.46	5.43E-04	τ(CH3), β(OH)
1059.92	1047.52	2.48E-03	τ(CH3), β(OH), ν(CO)
1063.35	1051.98	4.41E-04	τ (CH3), β (OH), ν (CO)
1069.10	1048.31	3.84E-03	τ (CH3), β (OH), ν (CO)
1071.26	1058.93	5.25E-05	β(CH3), β(NH)
1079.81	1058.60	2.97E-05	τ(CH3), β(OH), ν(CO), ν(CN)
1086.64	1064.92	4.82E-05	Bending H+ on Acetyl Oxygen, τ (CH3), β (OH), ν (CO)
1088.69	1044.34	2.39E-04	Bending H+ on Acetyl Oxygen, τ (CH3), β (OH)
1095.04	1073.78	6.34E-04	Bending H+ on Acetyl Oxygen, τ (CH3), τ (CH2), β (OH)
1102.04	1083.23	8.66E-04	Bending H+ on Acetyl Oxygen, τ (CH3), τ (CH2), β (OH)
1119.58	1102.12	5.63E-06	τ (CH2), β (OH), β (HCCH)
1122.47	1103.85	2.00E-04	Bending H+ on Acetyl Oxygen, τ (CH2), β (OH)
1125.35	1105.30	9.96E-04	Bending H+ Acetyl Oxygen, τ (CH3), τ (CH2), β (OH), vas(COC)
1134.12	1118.47	8.09E-04	β (CH2), β (HCCH)
1135.81	1121.16	2.71E-04	β (OH), β (HCCH)
1140.64	1123.53	1.37E-03	τ (CH3), β (OH), β (HCCH)
1145.32	1133.73	6.29E-04	τ (CH2), β (OH), β (HCCH)
1148.92	1129.74	1.32E-05	τ (CH2), β (OH), β (HCCH)
1151.28	1134.25	5.72E-05	τ (CH2), β (OH), β (HCCH)
1169.02	1154.96	2.06E-06	τ (CH3), β (OH), β (HCCH)
1169.86	1154.76	1.12E-06	τ (CH3), β (OH), β (HCCH)
1171.53	1159.33	1.18E-04	β (OH), β (HCCH)
1178.86	1167.69	1.07E-03	τ(CH2), β(OH)
1184.52	1173.71	1.44E-06	τ(CH2), β(OH)
1188.90	1175.04	1.10E-03	τ(CH3), β (OH), β (HCCH), ν (CC)
1192.87	1179.59	2.69E-05	τ (CH3), β (OH), β (HCCH)
1202.65	1187.32	1.11E-03	β (NH), β (HCCH), β (OH)
1210.92	1195.30	2.07E-03	vas(COC) in glycosidic linkage, β (NH), β (HCCH), β (OH)
1216.14	1199.17	4.13E-04	τ (CH2), β (OH), β (HCCH)
1234.50	1228.59	4.31E-04	β (OH), β (HCCH)
1241.53	1226.37	9.92E-05	β (OH), β (HCCH)
1247.37	1231.95	4.34E-05	τ (CH2), β (OH), β (HCCH)
1254.09	1245.21	1.13E-03	β (OH), β (HCOH)
1255.27	1238.13	3.64E-07	β (OH), β (HCCH)
1259.78	1236.83	3.10E-03	β (OH), β (HCCH)
1274.56	1242.36	6.17E-04	τ (CH2), β (OH), β (HCCH)
1282.76	1261.10	1.37E-04	β (OH), β (HCOH)
1294.15	1262.11	2.87E-03	β (OH), β (HCOH)
1296.25	1259.35	1.03E-03	β (OH), β (HCOH)

Table S8: Vibrationa	I mode assignment of [c	r-Le ^a +H] ⁺ ion (B):	
Harmonic Vib	Anharmonic Vib	Intensity	Assignment
958.75	937.12	1.16E-02	β(СО), β(СН2), β(NH)
971.43	944.60	6.61E-02	β(CO), β(CH2), β(NH), v(CO)
984.97	974.00	7.45E-02	β(CH2), vs(COC) in glycosidic linkage
986.16	970.65	6.77E-02	β(CH3), v(CO)
1000.97	980.94	4.06E-02	β(CH3), vs(COC) in glycosidic linkage, β(NH)
1019.23	1008.01	5.59E-02	δ(HCCH), ν(CO)
1030.84	1018.68	4.67E-02	β(CH3), β(NH), Bending H+ on Acetyl Oxygen
1044.52	1050.11	3.12E-02	β(CH3), Bending H+ on Acetyl Oxygen
1054.71	1035.89	1.18E-02	β(CH3), Bending H+ on Acetyl Oxygen, β(CO)
1062.59	1045.54	2.46E-01	β(CH3), Bending H+ on Acetyl Oxygen, β(CO)
1071.07	1068.74	9.21E-02	β(СНЗ), β(NH)
1076.68	1061.68	3.48E-01	β(CH3), β(NH), Bending H+ on Acetyl Oxygen, β(CO)
1080.05	1063.47	1.29E-03	δ(HCCH), ν(CO), β(COH), β(CH3)
1089.91	1075.13	1.12E-01	β(CH3), Bending H+ on Acetyl Oxygen, v(CC)
1093.84	1079.89	1.69E-02	ν(CO), β(HCCH), β(CO)
1104.26	1090.66	2.21E-01	Bending H+ on Acetyl Oxygen, β(CO)
1110.75	1093.27	4.76E-04	Bending H+ on Acetyl Oxygen, β(CO)
1117.51	1104.04	3.23E-01	ν(CO), β(CO)
1120.21	1113.23	1.97E-02	ν(CO), β(CO)
1124.20	1108.57	1.22E-01	v(CC), v(CO)
1125.71	1113.03	8.47E-03	v(CC), v(CC), Bending H+ on Acetyl Oxygen
1134.93	1091.52	3.26E-02	Bending H+ on Acetyl Oxygen
1135.79	1116.99	7.21E-01	β(CO)
1141.30	1088.83	3.27E-01	Bending H+ on Acetyl Oxygen, β (CO)
1144.76	1127.78	9.06E-01	v(CC), v(CO)
1149.40	1132.26	8.78E-03	v(CC), v(CO)
1150.35	1128.61	8.17E-03	$v(CO)$, $\tau(CH2)$, Bending H+ on Acetyl Oxygen
1160.90	1142.52	2.76E-01	$\beta(CO), \tau(CH2), \delta(HCOH)$
1168.76	1153.76	4.42E-02	$\beta(CO), \tau(CH2), \delta(HCOH), v(CO)$
1175.21	1156.98	2.55E-03	vas(CUC) in glycosidic linkage, v(CC)
11/9.99	1160.37	6.07E-03	$\beta(CH3), \beta(CO), vas(COC)$ in glycosidic linkage
1191.64	11/7.03	2.55E-01	$\beta(CH3), \beta(CO), vas(COC) in givesidic linkage$
1198.51	1183.72	4.69E-03	$V(CC), V(CO), \beta(CH3)$
1202.00	11/8.94	2.80E-01	vas(COC) in giycosidic linkage, B(HCCH)
1224.48	1212.94	2.43E-02	p(CO), p(HCCH)
1227.49	1207.98	1.04E-01	$\beta(CO), \tau(CH2), \nu(CO)$
1239.00	1222.30	3.82E-02	р(со), t(сн2), v(со)
1239.34	1224.70	1.40E-05 2.575.04	
1243.77	1221.12	2.372-04	p(CO), p(RCCH), t(CH2)
1252.50	1245.77	1.95E-02	
1259.20	1234.14	5 225E-02	B(CO)
1202.80	1247.00	7 01E 02	
1272.13	1253.15	0 80E-03	
1282 77	1234.30	6 835-03	р(СС), ((СП2) 8(HCOH)
1788 64	1772 21	1.03L-02	
1200.04	12/3.01	4.1/E-04	$\mu(CO), \mu(\Pi CCI)$

Fable S9: Vibrational mode	e assignment of	[α-Le ^a +H] ⁺	(B'):
----------------------------	-----------------	-------------------------------------	-------

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
963.121	899.649	2.33E-02	β(CO), β(CH2)
966.858	944.343	1.01E-02	Bending H+ on Acetyl Oxygen, β(HCOH)
976.096	919.302	4.50E-03	Bending H+ on Acetyl Oxygen, β(HCOH)
990.368	954.618	3.17E-02	β(НССН), β(СО), β(СНЗ)
992.234	976.535	3.54E-02	β(НССН), β(СО)
1017.299	977.476	2.75E-02	β(HCCH), β(CO), vs(COC) in glycosidic linkage
1032.224	1003.245	1.40E-02	β(СНЗ), β(СО)
1048.925	1031.464	2.03E-02	β(СН3), β(НССН),β(СН3), β(СН2)
1057.257	1041.69	4.86E-02	β(CH3), β(CO), ν(CC), β(CH2)
1064.891	1048.044	7.70E-03	β(CH3)
1066.109	1069.899	1.14E-02	β(CH3), β(CO), ν(CC)
1070.73	1060.182	1.62E-02	vs(COC), δ(HCCH), β(CH3)
1084.191	1054.922	5.86E-02	vs(COC), vas(COC), δ(HCCH), β(CH3)
1097.038	1067.22	3.18E-02	β(CH3), β(CO), ν(CC),ν(CO)
1102.104	1088.22	8.24E-03	β(CO), ν(CC),ν(CO)
1109.919	1095.262	1.03E-01	β(CO), β(CH2), vas(COC) in glycosidic linkage
1113.694	1105.118	1.68E-02	β(HCCH), v(CC),v(CO)
1114.663	1107.297	4.31E-02	β(HCCH), ν(CC), β(CH3)
1117.185	1109.503	4.13E-02	β(HCOH), ν(CC), β(HCCH)
1123.339	1113.618	2.86E-02	β(HCCH), ν(CO), β(CH2)
1129.458	1117.633	4.71E-02	β(HCCH), ν(CO), β(CH2)
1139.58	1123.788	3.79E-02	vas(COC) in glycosidic linkage, vas(COC), β(HCCH)
1144.665	1129.108	2.16E-02	ν(CC) <i>,</i> β(HCCH)
1148.197	1132.106	4.38E-02	v(CC), v(CO), β(HCCH)
1155.456	1138.428	1.10E-02	ν(CC), ν(CO), β(CH2)
1158.947	1140.292	2.79E-02	ν(CC), ν(CO), β(CH2)
1162.674	1147.601	3.14E-02	Bending H+ on Acetyl Oxygen, v(CC), v(CO)
1169.168	1154.735	2.16E-02	β(HCOH) <i>,</i> τ(CH2)
1178.089	1159.305	4.82E-02	β(HCCH), ν(CC)
1180.209	1160.704	1.46E-02	ν(CC), β(CH3)
1190.309	1174.31	2.88E-02	β(CH3), β(HCCH), ν(CC)
1194.331	1177.606	1.52E-02	vas(COC) in glycosidic linkage, vas(COC), β(HCOH)
1199.017	1183.569	1.29E-02	vas(COC) in glycosidic linkage, β(HCCH)
1205.566	1189.46	2.19E-02	vas(COC) in glycosidic linkage, β(HCCH)
1215.353	1201.285	1.22E-02	β(НССН), β(НСОН)
1222.887	1212.97	2.74E-02	β(НССН), β(НСОН), β(СН2)
1238.306	1222.21	7.12E-03	β(НССН), β(НСОН), β(СН2)
1240.22	1228.762	8.69E-03	β(НССН), β(НСОН)
1249.65	1240.452	2.12E-02	β(НССН), β(НСОН), β(СНЗ)
1257.279	1235.347	1.15E-02	β(НССН), β(НСОН)
1264.456	1244.898	1.03E-02	β(НССН), β(НСОН)
1277.466	1253.372	1.42E-03	β(HCCH), β(HCOH), β(CH2)
1281.368	1250.226	5.50E-03	β(НСОН), β(СН2)
1286.588	1270.706	1.55E-02	β(НССН), β(НСОН), β(СНЗ)
1301.259	1270.204	2.06E-02	β(НССН), β(НСОН)

v-stretching, as–asymmetric, s-symmetric, β–in-plane bending, γ–out-of-plane bending, δ-scissoring, τ-twisting

Table CAA.	Vibrational	and a a		~ f [0]	-2.11	1+ :	/ D /\	
<i>i adle 510:</i>	vibrational n	node as	ssignment	ot [B-L	е"+н	r ion ((B)	

		,, ····, ···· ()	
Harmonic Vib	Anharmonic Vib	Intensity	Assignment
973.65	948.94	3.65E-02	β(CO), β(CH2)
982.05	967.85	2.51E-02	β(CH3), β(CO), ν(CC)
992.595	938.06	3.49E-02	Bending H+ on Acetyl Oxygen, β(HCOH)
997.051	980.02	4.29E-02	β(НССН), β(СО), β(СН2)
1002.091	980.49	6.80E-03	β(HCCH), β(CO), β(CH2)
1019.572	1004.59	9.27E-02	β(CH3), β(CO)
1025.619	1026.37	4.67E-03	β(CH3), δ(HCCH)
1036.645	995.18	1.07E-01	β(CH3), β(CO)
1050.108	1038.27	6.00E-01	β(CH3), β(CO), ν(CC)
1052.948	1038.18	2.42E-01	β(CH3), β(CO), ν(CC), ν(CO)
1067.258	1055.66	1.91E-01	β(СНЗ), β(СО)
1071.226	1057.67	3.91E-02	β(CH3), β(CO)
1072.102	1066.01	1.87E-02	β(CH3)
1082.2	1069.14	1.50E-01	β (CH3), β (CO), ν (CO), ν (CO) in glycosidic linkage
1087.621	1071.00	4.11E-02	β(CH3), Bending H+ on Acetyl Oxygen, vas(CC)
1093.566	1076.18	1.27E-01	v(CC), vas(COC) in glycosidic linkage, v(CO), β(CO)
1107.163	1096.15	6.91E-02	v(CC), v(CO), β(CO)
1114.063	1099.27	1.11E-01	v(CC), v(CO), β(CO)
1118.298	1101.15	6.53E-01	v(CC), v(CO), β(CO)
1124.132	1114.92	7.43E-02	β(CH3), β(CO)
1124.624	1114.85	1.69E-01	ν(CO), β(CO), β(CH3)
1128.909	1107.88	1.13E-01	v(CO), β(CO)
1135.695	1122.53	6.06E-02	v(CC), v(CO), β(CO)
1138.917	1125.97	1.29E-02	ν(CO), β(CO), β(CH3), ν(CC)
1145.28	1125.70	1.70E-01	v(CC), v(CO), β(CO)
1146.522	1125.54	2.09E-01	Bending H+ on Acetyl Oxygen, v(CC)
1153.025	1134.19	2.89E-02	ν(CO), β(CO), β(CH2)
1162.964	1155.78	9.97E-02	β(CH3), β(CO)
1164.947	1162.15	2.09E-01	β(CH3), β(CO)
1168.378	1151.77	7.37E-01	β(CH2), β(CO), ν(CC)
1187.468	1170.18	7.96E-02	β(CH3), β(CO), vas(CO)
1193.929	1173.12	5.91E-02	vas(COC) in glycosidic linkage, β (CO), β (CH2)
1197.559	1182.37	2.05E-02	v(CO) in glycosidic linkage, β (CO), β (CH3)
1208.065	1185.40	4.03E-01	β(CH3), β(CO), ν(CC)
1218.062	1207.12	9.06E-01	vas(COC) in glycosidic linkage, β (CO), β (CH3)
1221.366	1213.41	2.85E-02	β(CO), β(CH3), β(CH2)
1221.901	1218.35	5.37E-01	β(CO), β(CH2)
1231.663	1197.53	6.37E-02	v(CC), β(CO)
1236.218	1222.75	5.85E-05	β(CO), β(CH2)
1247.209	1226.16	7.75E-02	β(CO), β(CH3)
1253.624	1233.63	4.79E-03	β(CO), β(CH2), ν(CO)
1257.268	1232.13	1.25E-01	β(CO), β(CH2), β(HCCH)
1274.553	1251.62	7.80E-03	β(CO), β(CH2), β(HCCH)
1291.243	1259.00	1.34E-01	β(CO), β(CH2), β(HCCH)
1293.553	1260.37	1.51E-02	β(CO), β(CH2)
1306.537	1264.31	1.51E-01	β(СО), β(СН2), β(НССН)

Table S11: Vibrational mode assignment of [β-Le^a+H]⁺ ion (²B')

Harmonic Vi	ib Anharmonic Vib	Intensity	Assignment
970.849	959.573	2.62E-02	β(HCCH), β(CH3)
977.682	967.062	8.53E-03	Bending H+ on Acetyl Oxygen, β(HCCH), β(CH3)
992.018	979.366	1.89E-02	β(HCCH)
997.87	982.909	2.10E-02	β(HCCH)
1007.175	992.28	4.05E-02	Bending H+ on Acetyl Oxygen, β(HCCH), β(CH3)
1019.391	1003.862	2.04E-02	β(НССН), β(СНЗ)
1023.694	1014.804	2.47E-02	β(HCCH), β(CH3)
1041.449	1036.668	1.05E-01	β(CH2), ν(CC), β(CH3)
1049.704	1038.533	1.54E-02	β(СН3)
1060.876	1036.032	3.16E-02	β(CH2), ν(CC), β(CH3)
1070.613	1057.689	4.40E-02	β(CH2), ν(CC), β(CH3)
1071.598	1065.364	5.63E-02	τ(CH3)
1083.037	1057.042	2.89E-02	τ(CH2), β(HCCH)
1088.282	1075.987	5.37E-03	ν(CO), β(CH3)
1092.32	1074.008	1.49E-02	ν(CO), β(HCCH)
1099.578	1094.361	4.16E-02	ν(CC), β(HCCH), β(HCOH)
1113.476	1066.727	8.84E-03	Bending H+ on Acetyl Oxygen
1116.065	1100.49	2.24E-02	ν(CO), β(HCCH), β(HCOH)
1119.631	1107.956	1.68E-02	τ(СН2), β(НССН), β(НСОН)
1123.74	1088.15	5.61E-02	Bending H+ on Acetyl Oxygen, τ(CH2)
1130.017	1108.976	5.25E-02	τ(СН2), β(НССН), β(НСОН)
1133.375	1122.877	2.02E-02	τ(СН3), β(НССН), β(НСОН)
1141.004	1124.037	6.40E-03	τ(СН2), β(НССН), β(НСОН)
1141.86	1126.436	2.78E-02	τ(СН2), β(НССН), β(НСОН)
1154.88	1141.93	7.37E-03	τ(СН2), β(НССН), β(НСОН)
1157.607	1144.962	4.85E-02	τ(СН3), β(НССН), β(НСОН)
1159.051	1142.707	2.12E-02	β(HCCH), ν(CO), ν(CC)
1164.717	1158.079	2.91E-02	β(HCOH), ν(CO), ν(CC)
1166.58	1151.631	2.50E-02	β(HCCH), β(HCOH), β(CH3), ν(CN)
1179.74	1165.165	5.68E-02	β(НССН), β(НСОН), β(СН3), ν(СО)
1185.255	1169.088	5.34E-02	vas(COC), β(HCCH), β(CH3)
1188.441	1171.374	2.11E-02	ν(CC), β(HCCH), β(CH3)
1200.98	1183.02	3.93E-02	β(HCCH), β(HCOH), β(CH3), ν(CN)
1211.219	1218.43	3.03E-03	β(НССН), β(НСОН)
1215.915	1198.841	2.30E-02	β(НССН), β(НСОН), β(СНЗ)
1220.176	1210.361	1.11E-02	τ(СН2), β(НССН), β(НСОН)
1222.203	1211.034	9.68E-03	β(СН2), β(НССН), β(НСОН)
1226.93	1209.565	5.82E-02	τ(СН2), β(НССН), β(НСОН)
1239.668	1221.362	2.56E-02	β(HCOH)
1244.952	1236.229	6.51E-04	τ(СН2), β(НССН), β(НСОН)
1248.514	1237.255	2.36E-02	β(НССН), β(НСОН)
1275.413	1252.762	1.49E-02	τ(СН2), β(НССН), β(НСОН)
1282.107	1248.806	2.90E-03	τ(CH2), β(HCCH)
1286.179	1263.725	1.95E-02	β(HCCH) <i>,</i> β(HCOH)
1291.791	1267.498	9.63E-03	τ(СН2), β(НССН), β(НСОН)
1294.09	1257.312	2.39E-02	τ(СН2), β(НССН), β(НСОН)
stratching as	symmetric s-symmetric	R_in_nlang	pending v_out-of-plane hending δ-solesoring τ-

Table S12: Vibrationa	al mode assignment c	of [α-a16+H]⁺ io ι	n (C):
Harmonic Vib	Anharmonic Vib	Intensity	Assignment
978.20	961.91	1.87E-01	β(CCH), β(CCO)
997.16	966.51	5.77E-03	β(CCH), β(CCO)
997.53	983.92	1.84E-02	vs(COC) in glycosidic linkage, β (COH)
1017.24	1002.16	1.33E-01	β(CCH), β(CCO)
1020.46	1034.78	4.94E-02	β(CCH), β(CCO)
1026.23	966.78	8.81E-03	Bending H+ on Acetyl Oxygen
1032.90	1021.46	1.65E-01	β(CCH), β(CCO), ν(CO)
1054.46	1043.37	1.50E-01	β(CCH), β(CCO), ν(CO)
1062.25	1057.52	3.68E-02	β(CCH), β(CCO)
1069.71	1061.99	9.80E-03	β(CCH), β(CCO)
1076.40	1058.02	3.88E-01	β(CCH), β(CCO), ν(CO)
1078.51	1067.00	1.03E-01	β(CCH), β(CCO)
1086.99	1071.57	9.06E-02	vas(COC) in glycosidic linkage, B(COH)
1092.10	1074.36	2.15E-01	vas(COC) in glycosidic linkage, B(COH)
1095.29	1084.97	1.79E-01	B(CCH). B(CCO)
1102.64	1084.22	6.41E-02	B(CCH), B(CCO), v(CO)
1107.26	1079.89	5.00E-01	v(CC). v(CO)
1114.71	1098.09	2.21E-01	B(CCH), B(CCO)
1123.10	1108.24	8.08E-03	B(CCH), B(CCO)
1127.10	1115.24	3.87E-01	B(CCH), B(CCO)
1129.75	1112.52	1.51E-02	B(CCH), B(CCO)
1137.39	1123.05	6.31E-01	v(CC), v(CO), B(CO)
1139.42	1125.41	1.23E-01	vas(CC), v(CO), β(CO)
1142.40	1128.86	1.63E-02	v(CO). B(CCH)
1146.49	1145.67	7.15E-02	v(CC), β(CO)
1153.97	1137.61	1.02E-01	β(CCH), β(CCO), ν(CH2), ν(CN)
1158.29	1140.11	4.18E-02	β (CCH), β (CCO), γ (CH2), γ (CN)
1166.69	1154.04	2.45E-01	β (CCH), β (CCO), γ (CH2), γ (CN)
1170.94	1155.94	2.05E-03	vas(COC) in glycosidic linkage, v(CN), β (CCH)
1177.57	1164.31	3.02E-01	β(CCO), v(CO)
1181.03	1165.79	2.76E-01	β(CCH), β(CCO)
1193.00	1170.55	1.04E-01	β(CCH), vas(CO)
1193.65	1179.37	3.79E-02	β(CCH), β(CCO)
1200.57	1186.86	9.06E-01	β(CCH), β(CCO)
1208.33	1196.07	6.48E-02	β(CCH), β(CCO)
1223.45	1203.25	3.49E-01	v(CH2), v(HC:OH)
1235.13	1223.41	2.45E-03	β (COH), β (CCH), vas(COC) in glycosidic linkage,
1242.23	1216.32	7.43E-03	β(CCH), β(CCO)
1243.88	1234.20	2.18E-03	β(CCH), β(CCO)
1254.56	1246.65	8.17E-02	β(CCH), β(CCO)
1256.09	1274.54	1.87E-02	B(CCH), B(CCO)
1261.46	1244.56	1.41E-02	τ(CH2), β(CCH). β(CCO)
1263.11	1242.36	8.31E-03	τ (CH2), β (CCH). β (CCO)
1269.00	1238.99	6.38E-03	τ(CH2), β(CCH). β(CCO)
1287.59	1266.85	6.95E-05	τ(CH2), β(CCH). β(CCO)
1288.75	1268.42	1.52E-03	τ(CH2), β(CCH), β(CCO)

Table S13: Vibrational mode assignment of $[\alpha-a16+H]^+$ ion (²A).

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
974.667	956.484	1.20E-02	Bending H+ on Acetyl Oxygen, β(HCOH), β(CH2)
980.024	965.865	3.38E-02	β(НСОН), β(НССН), β(СН2)
996.675	980.751	8.16E-03	β(HCCH)
1000.171	986.556	3.22E-02	β(НСОН), β(НССН), β(СН2)
1014.178	998.44	1.00E-02	β(НСОН), β(НССН)
1017.802	1004.147	1.57E-02	β(НССН), β(СНЗ)
1022.506	1013.37	2.28E-02	Bending H+ on Acetyl Oxygen, β (CH3)
1041.677	1030.531	2.67E-02	β(НСОН), β(НССН)
1047.231	1038.782	9.11E-03	Bending H+ on Acetyl Oxygen, β(CH3)
1056.308	1025.305	4.43E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(HCCH)
1067.354	1052.707	1.81E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(HCCH)
1069.702	1064.303	3.36E-02	β(СН3)
1076.585	1064.081	1.40E-02	vas(COC) in glycosidic linkage, β (HCOH), β (HCCH)
1080.736	1059.308	2.27E-02	β(НСОН), β(НССН), β(СН2), β(СН3)
1087.976	1090.16	4.02E-02	β(НСОН), β(НССН)
1089.01	1073.041	5.95E-03	β(НСОН), β(СНЗ)
1103.813	1059.413	7.44E-02	Bending H+ on Acetyl Oxygen
1116.034	1102.872	1.56E-01	vas(COC) in glycosidic linkage, β(HCOH), β(HCCH)
1119.09	1108.199	3.80E-02	β(НСОН), β(НССН)
1121.338	1100.445	9.44E-02	Bending H+ on Acetyl Oxygen, β(HCOH), β(HCCH)
1126.087	1111.104	1.45E-02	Bending H+ on Acetyl Oxygen, β(HCOH), β(HCCH)
1129.328	1114.967	1.05E-02	β(НСОН), β(НССН), β(СНЗ)
1132.638	1116.051	1.12E-02	ν(CO), β(HCOH), β(HCCH)
1146.804	1130.982	3.25E-02	β(НСОН), β(НССН)
1148.048	1124.854	4.36E-02	β(НСОН), β(НССН)
1153.226	1137.201	1.05E-02	ν(CO), β(HCOH), β(HCCH)
1154.432	1135.659	5.72E-02	β(НСОН), β(НССН), β(СН2)
1168.68	1152.862	2.37E-02	β(ΗСОН), β(НССН), β(СНЗ)
1172.957	1155.501	5.83E-03	ν(CO), β(HCOH), β(HCCH)
1175.796	1165.251	4.39E-02	β(HCOH), β(HCCH), β(CH2)
1182.617	1165.735	3.08E-02	В(НССН), В(НС NH)
1188.85	1172.895	8.08E-03	
1196.457	1182.025	2.85E-02	β(HCOH), β(HCCH), β(CH3)
1209.37	1184.04	2.83E-02	
1218.801	1201.11	1.37E-02	
1233.583	1231.98	3.28E-02	
1236.744	1205.811	2.79E-02	
1237.678	1227.807	3.40E-02	
1240.901	1228.294	1.62E-02	
1253.928	1246.464	7.56E-03	
1261.071	1246.543	1.23E-02	
1201.42/	1243.350	1.U1E-U2	
12/5./35	1240.323	0.3/E-U3	
1207 621	1200.977	1.03E-U3	
1297.021	1200.489	3.03E-02	
1300.210	1277.084	1.03E-02	

Table S14: Vibrational mode assignment of [β-a16+H]⁺ ion.(C')

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
981.65	932.34	2.21E-02	Bending H+ on Acetyl Oxygen, β (CCH)
997.40	969.26	1.14E-01	Bending H+ on Acetyl Oxygen, β(CCH), β(CCO)
1001.64	982.47	1.71E-01	β(CCH), β(CCO), β(CNH)
1015.80	1000.28	2.72E-02	δ(CH2)
1019.92	1007.84	8.77E-02	δ(CH2)
1032.54	1014.82	2.88E-02	β(ССН), β(ССО)
1041.09	1047.97	3.13E-03	β(ССН), β(ССО)
1053.71	1037.68	4.80E-01	ν(CO), ν(CC), β(COH)
1057.17	1073.37	3.80E-02	δ(CH2)
1061.53	1047.58	9.00E-01	ν(CC), β(COH)
1073.67	1059.66	1.80E-02	vas(COC) in glycosidic linkage, β(COH), v(CO)
1077.10	1078.72	1.88E-02	β(СОН), β(СН)
1086.07	1075.78	4.92E-01	β(ССН), β(ССО)
1088.44	1073.50	1.55E-02	β(ССН), β(ССО)
1102.58	1095.20	8.13E-02	β(CCH), β(CCO), ν(CC)
1106.87	1088.42	1.38E-01	δ(HCOH), ν(CO), τ(CH2)
1113.04	1099.94	4.63E-02	β(ССН), β(ССО)
1113.62	1097.26	2.91E-03	β(CCH), β(CCO), ν(CO)
1120.70	1111.24	4.01E-01	β(ССН), β(ССО)
1124.27	1116.74	2.45E-01	β(ССН), β(ССО)
1128.11	1118.22	1.27E-01	β(ССН), β(ССО)
1133.87	1117.95	9.06E-01	vas(CO), ν(CO), β(CO), β(CH)
1141.36	1124.91	9.75E-02	ν(CC), β(CO), β(CH)
1147.42	1127.45	5.76E-01	vas(CO), ν(CO), β(CO), β(CH)
1150.72	1134.44	2.79E-02	ν(CO), β(CO), β(CH)
1160.89	1142.91	4.12E-03	ν(CC), β(CO), β(CH)
1167.63	1150.51	7.77E-04	ν(CC), β(CO), β(CH)
1174.04	1155.27	4.84E-01	ν(CO), β(COC), β(CH)
1176.85	1158.19	2.37E-01	β(CCO), ν(CO), β(CH)
1184.29	1166.01	2.45E-02	β(CCO), ν(CO), β(CH)
1187.86	1169.02	7.30E-02	β(CCO), ν(CO), β(CH)
1190.94	1175.31	2.66E-02	γ(CH2), γ(HC:OH)
1191.85	1168.27	7.61E-03	γ(CH2), γ(HC:OH)
1202.43	1188.73	2.60E-03	δ(HCCH), ν(CO), β(COH)
1212.28	1192.66	1.13E-01	β(COH), β(CCH), vas(COC) in glycosidic linkage,
1220.16	1189.58	2.41E-01	β(ССН), β(ССО)
1235.25	1217.90	5.66E-02	δ(НССН), β(СОН)
1242.33	1231.98	1.39E-02	δ(НССН), β(СОН)
1251.26	1218.79	3.01E-02	τ(CH2)
1255.97	1246.00	6.71E-03	β(ССН), β(ССО)
1258.42	1281.33	1.20E-01	δ(ΗСΟΗ)
1265.92	1241.76	2.53E-02	γ(CH2), γ(HC:OH)
1283.82	1263.92	1.11E-02	γ(CH2), γ(HC:OH)
1290.42	1270.33	5.75E-03	β(СН3), β(ССН), β(ССО)
1296.20	1267.49	1.14E-01	β(СНЗ), β(ССН), β(ССО)
1300.81	1269.51	5.12E-03	β(CH3), β(CCH), β(CCO)

Table S15 Vibrational mode assignment of [α-an16+H]⁺ ion.(D)

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
967.50	953.84	1.06E-03	β(OH), β(HCCH), τ(CH2), τ(CH3)
977.24	947.21	7.96E-05	Bending H+ on Acetyl Oxygen, β (HCNH)
980.30	967.42	5.95E-04	β (HCCH), β (OH)
997.00	985.50	3.54E-04	β (OH), β (HCCH), τ (CH2)
1015.13	1009.74	3.97E-03	Bending H+ on Acetyl Oxygen, τ (CH3)
1021.35	1014.72	8.52E-03	Bending H+ on Acetyl Oxygen, τ (CH3), β (HCCH)
1024.51	1023.84	3.26E-04	Bending H+ on Acetyl Oxygen, t(CH3)
1049.47	1022.08	2.16E-03	Bending H+ on Acetyl Oxygen, t(CH3)
1058.49	1045.16	2.44E-03	β (OH), β (HCCH), τ (CH2), τ (CH3), ν (CO)
1062.27	1024.67	5.22E-04	Bending H+ on Acetyl Oxygen, t(CH3)
1071.98	1053.14	3.71E-04	Bending H+ on Acetyl Oxygen, τ (CH3), β (HCCH)
1074.92	1064.18	3.53E-04	vs(COC) in glycosidic linkage, δ (HCOH)
1077.20	1054.08	1.80E-03	Bending H+ on Acetyl Oxygen
1089.66	1080.92	2.52E-05	Bending H+ on Acetyl Oxygen, β (OH)
1090.82	1078.84	7.77E-05	β (OH), β (HCCH), τ (CH2), τ (CH3), ν (CO)
1100.64	1089.47	1.26E-04	β (OH), β (HCCH), ν (CC)
1110.10	1101.51	5.62E-04	Bending H+ on Acetyl Oxygen, β (OH)
1113.19	1099.24	2.21E-03	Bending H+ on Acetyl Oxygen, β (OH), β (HCOH),
1114.38	1099.63	7.44E-04	Bending H+ on Acetyl Oxygen, β (OH), β (HCOH),
1119.49	1109.43	1.50E-04	β (OH), δ (HCOH), τ (CH3)
1122.98	1109.64	3.10E-03	β (OH), δ (HCOH), τ (CH3)
1130.66	1119.54	2.96E-03	β (OH), δ (HCOH)
1135.89	1120.74	4.51E-05	β (OH), δ (HCOH), τ (CH2)
1138.16	1122.06	4.30E-04	vas(COC), δ(HCOH)
1139.44	1127.92	8.28E-05	β (OH), δ (HCOH)
1151.41	1137.36	1.04E-04	β (OH), δ (HCOH)
1158.31	1141.11	1.40E-04	β (OH), δ (HCOH)
1161.00	1144.14	6.33E-05	β (OH), δ (HCOH), τ (CH2)
1169.74	1152.69	2.07E-05	vs(COC) in glycosidic linkage, δ (HCOH), β (OH)
1172.59	1154.58	7.21E-04	β (OH), β (HCOH)
1182.30	1165.13	1.23E-05	δ (HCOH), τ (CH3)
1185.93	1167.83	1.53E-04	$\delta(\text{HCCH}), v(\text{CN})$
1192.95	1177.33	4.19E-03	$\beta(OH), \delta(HCOH), \tau(CH3)$
1201.53	1193.99	7.42E-05	$\delta(\text{HCCH}), \delta(\text{HCOH})$
1204.33	1188.64	1./3E-03	$\beta(OH), \delta(HCOH), \tau(CH3)$
1214.89	1205.55	4.92E-05	$\delta(\text{HCCH}), \delta(\text{HCOH})$
1222.83	1217.88	5.4/E-04	o(HCCH), o(HCOH)
1231.95	1219.20	5.11E-04	ð(HCCH), ð(HCOH)
1239.39	1227.95	0.56E-04	0(HCCH), 0(HCOH)
1246.50	1244.21	1.10E-03	$\beta(OH), \beta(HCCH)$
1257.77	1251.47	4.85E-04	o(HCOH)
1202.72	1255.60	1.09E-03	$p(OH), o(HCOH), \tau(CH2)$
12/3.31	1260.50	1.03E-04	$p(OH), o(HCOH), \tau(CH2)$
12/5./5	1258.34	2.54E-03	$p(OH), \delta(HCOH), \tau(CH2)$
1281.23	1254.01	4.81E-04	$p(OH), \delta(HCOH), \tau(CH2)$
1297.58	1261.93	3.96E-05	р(ОН), β(НССН)

Table S16: Vibrational mode assignment of	[α-an16+H] ⁺ ion (²D)

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
958.776	939.879	1.40E-02	β(HCOH), β(CH2)
965.394	950.152	6.23E-03	β(HCCH), β(CH2)
983.841	966.711	3.86E-02	Bending H+ on Acetyl Oxygen, β(HCNH)
990.314	974.485	3.04E-03	β(HCCH)
993.907	974.973	1.14E-02	β(HCCH)
1017.728	1006.407	2.49E-02	β(НССН) <i>,</i> β(СНЗ)
1025.122	1015.024	2.77E-03	β(НССН) <i>,</i> β(СНЗ)
1034.303	1030.262	8.69E-03	β(CH3)
1045.053	1029.905	5.24E-02	β(CH3)
1058.255	1046.319	9.39E-03	β(HCCH), τ(CH3)
1061.11	1047.428	2.58E-02	β(HCCH), τ(CH3)
1080.298	1068.876	5.95E-02	vs(COC) in glycosidic linkage, β(HCOH)
1085.484	1070.469	3.85E-02	vas(COC) in glycosidic linkage, β(HCOH), τ(CH2)
1092.836	1081.065	1.96E-02	τ(CH2), β(HCOH)
1103.637	1094.16	5.20E-03	β(HCOH)
1109.288	1092.33	2.03E-02	β(НСОН), β(НССН)
1113.726	1097.405	7.75E-02	β(НСОН), β(НССН)
1117.794	1105.012	2.57E-02	β(НСОН), β(НССН)
1125.676	1113.195	2.64E-02	ν(CO), β(HCOH), β(HCCH)
1128.93	1117.966	4.52E-02	ν(CO), β(HCOH), β(HCCH)
1135.023	1117.389	4.64E-02	ν(CO), β(HCOH), β(HCCH)
1139.222	1124.598	1.80E-02	v(CC), β(НСОН), β(НССН)
1142.448	1128.477	3.30E-02	vas(COC) in glycosidic linkage, v(CC), β(HCOH)
1153.399	1138.712	4.65E-02	ν(CC), β(HCOH), β(HCCH)
1156.254	1140.862	2.02E-02	ν(CC), vas(COC), β(HCOH), β(HCCH)
1160.386	1144.882	3.95E-02	β(ΗССΗ)
1162.397	1152.777	2.64E-02	β(НСОН), β(НССН)
1173.156	1155.829	1.10E-02	v(CO), β(НСОН), β(НССН)
1179.323	1161.099	2.77E-02	β(HCCH) <i>,</i> τ(CH3)
1180.82	1164.481	5.21E-02	vas(COC), β (HCOH), β (HCCH)
1186.932	1168.904	5.74E-02	ν(СО), β(НСОН), β(НССН), β(СНЗ)
1191.736	1171.935	3.00E-02	vas(COC), β(HCOH), β(HCCH)
1194.79	1180.177	1.15E-02	vas(COC) in glycosidic linkage, v(CC), β(HCOH)
1202.951	1185.306	8.97E-03	vas(COC) in glycosidic linkage, β(HCOH), β(HCCH)
1217.874	1201.015	2.56E-02	β(НСОН), β(НССН)
1220.991	1215.613	1.88E-02	β(НССН), β(НСОН), τ(СН2)
1238.84	1226.956	2.84E-03	β(НСОН), β(НССН)
1242.694	1229.352	1.51E-02	β(НССН), β(НСОН), τ(СН2)
1250.478	1240.669	2.43E-02	β(НСОН), β(НССН)
1251.959	1235.388	2.00E-02	β(ΗСОН), β(НССН), β(НСΝΗ)
1269.828	1253.488	1.16E-02	β(НССН), β(НСОН), τ(СН2)
1279.717	1256.012	2.69E-03	β(HCCH), β(HCOH), τ(CH2)
1286.255	1269.787	1.78E-02	β(ΗССΗ), β(НСОН)
1288.293	1266.141	1.56E-03	β(ΗϹΟΗ), β(ΗϹϹΗ), β(ΗϹΝΗ)
1298.122	1266.36	1.22E-02	β(HCNH) <i>,</i> τ(CH2)

Table S17: Vibrational mode assignment of [β-an16+H] ⁺ (D	り
--	---

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
970.10	948.31	2.25E-04	β(OH) <i>,</i> τ(CH2)
983.24	967.42	2.79E-03	β(OH), δ(HCCH), τ(CH3)
993.31	980.85	1.46E-05	δ(HCCH), τ(CH3)
1000.53	983.71	1.54E-03	δ(HCCH), τ(CH3)
1016.63	1011.34	8.58E-04	τ(СН3)
1017.22	1012.99	3.15E-03	τ(СН3)
1044.61	1034.05	5.77E-04	β(OH), δ(HCCH), τ(CH3)
1052.17	1063.16	4.24E-05	β(OH), vs(COC), τ(CH3)
1058.21	1047.28	2.78E-03	β(OH), ν(CO), τ(CH3)
1068.71	1057.86	3.40E-04	β(OH) <i>,</i> τ(CH3)
1072.79	1068.15	4.34E-05	δ(HCCH), τ(CH3)
1075.76	1062.26	2.98E-04	β(OH), ν(CO), τ(CH2), τ(CH3)
1088.87	1073.74	3.28E-03	β(НССН), ν(СС), β(ОН)
1091.39	1080.51	6.25E-04	β(НССН), ν(СС), β(ОН)
1103.51	1094.47	2.82E-04	β(НССН), ν(СС), β(ОН)
1110.89	1100.13	4.85E-03	β(НССН), β(ОН)
1114.86	1098.43	1.59E-03	β(HCCH), β(OH), vas(COC)
1117.41	1107.99	1.68E-03	β(OH), δ(HCCH), τ(CH2)
1120.01	1109.16	2.16E-04	β(OH), δ(HCCH), τ(CH3)
1123.63	1107.02	6.85E-05	β(OH), δ(HCCH), τ(CH2)
1132.28	1119.47	5.20E-06	β(OH), δ(HCCH), τ(CH3)
1139.34	1122.15	1.03E-04	β(HCCH), β(OH), ν(CO)
1141.14	1126.76	1.51E-03	β(OH), δ(HCCH), τ(CH3)
1152.32	1133.69	1.61E-04	β(HCCH), β(OH), ν(CO)
1153.02	1137.67	9.60E-05	β(HCCH), v(CC)
1155.03	1140.39	5.11E-04	β(OH), δ(HCCH), τ(CH2)
1160.25	1143.43	1.88E-03	β(HCCH), β(OH), ν(CO)
1162.08	1153.03	5.24E-05	β(OH), δ(HCCH), τ(CH3), ν(CN)
1172.77	1149.10	8.35E-05	β(HCCH), ν(CO)
1173.29	1157.55	4.65E-05	β(НССН), β(СНЗ)
1179.10	1158.89	3.07E-05	β(HCCH), v(CO)
1182.84	1167.82	4.18E-04	Bending H+ on Acetyl Oxygen, $\beta(OH)$, vas(COC)
1188.11	1172.88	2.81E-04	vas(COC) in glycosidic linkage, β (CH3), β (OH)
1196.79	1182.57	5.39E-05	$\delta(\text{HCOH}), \tau(\text{CH3})$
1206.82	1187.26	6.19E-05	vas(COC) in glycosidic linkage, β(HCCH), β(OH)
1222.02	1205.70	3.93E-04	β (HCOH), τ (CH2)
1225.68	1206.61	1.83E-04	
1235.37	1224.47	7.26E-04	β (HCOH), β (HCCH), τ (CH3)
1241.17	1227.11	7.95E-04	
1249.78	1246.92	9.23E-04	β(ΗCOH)
1259.94	1245.75	3.25E-04	
1270.72	1248.95	3.44E-04	$\beta(HCOH), \beta(HCCH), \tau(CH2)$
12/5.22	1253.01	1.2/E-U3	
1283.57	1262.00	4.U/E-U4	
1290.57	1270.27	1.265-04	
1295.59	1270.05	1.60E-03	β(HCOH), β(HCCH), τ(CH2

Table S18: Vibrational mode assignment of [β-an16+H]⁺ (²D')

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
974.667	956.484	1.20E-02	Bending H+ on Acetyl Oxygen, β(HCOH), β(CH2)
980.024	965.865	3.38E-02	β(НСОН), β(НССН), β(СН2)
996.675	980.751	8.16E-03	β(HCCH)
1000.171	986.556	3.22E-02	β(НСОН), β(НССН), β(СН2)
1014.178	998.44	1.00E-02	β(НСОН), β(НССН)
1017.802	1004.147	1.57E-02	β(НССН), β(СН3)
1022.506	1013.37	2.28E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1041.677	1030.531	2.67E-02	β(НСОН), β(НССН)
1047.231	1038.782	9.11E-03	Bending H+ on Acetyl Oxygen, β(CH3)
1056.308	1025.305	4.43E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(HCCH)
1067.354	1052.707	1.81E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(HCCH)
1069.702	1064.303	3.36E-02	β(СНЗ)
1076.585	1064.081	1.40E-02	vas(COC) in glycosidic linkage, β (HCOH), β (HCCH)
1080.736	1059.308	2.27E-02	β(НСОН), β(НССН), β(СН2), β(СН3)
1087.976	1090.16	4.02E-02	β(НСОН), β(НССН)
1089.01	1073.041	5.95E-03	β(НСОН), β(СНЗ)
1103.813	1059.413	7.44E-02	Bending H+ on Acetyl Oxygen
1116.034	1102.872	1.56E-01	vas(COC) in glycosidic linkage, β (HCOH), β (HCCH)
1119.09	1108.199	3.80E-02	β(НСОН), β(НССН)
1121.338	1100.445	9.44E-02	Bending H+ on Acetyl Oxygen, β (HCOH), β (HCCH)
1126.087	1111.104	1.45E-02	Bending H+ on Acetyl Oxygen, β (HCOH), β (HCCH)
1129.328	1114.967	1.05E-02	β(HCOH), β(HCCH), β(CH3)
1132.638	1116.051	1.12E-02	ν(CO), β(HCOH), β(HCCH)
1146.804	1130.982	3.25E-02	β(HCOH), β(HCCH)
1148.048	1124.854	4.36E-02	β(HCOH), β(HCCH)
1153.226	1137.201	1.05E-02	ν(CO), β(HCOH), β(HCCH)
1154.432	1135.659	5.72E-02	β(HCOH), β(HCCH), β(CH2)
1168.68	1152.862	2.37E-02	β(HCOH), β(HCCH), β(CH3)
1172.957	1155.501	5.83E-03	
1175.796	1165.251	4.39E-02	β (HCOH), β (HCCH), β (CH2)
1182.617	1165./35	3.08E-02	
1188.85	1172.895	8.08E-03	
1196.457	1182.025	2.85E-02	
1209.37	1184.04	2.83E-02	
1218.801	1201.11	1.37E-02	
1233.583	1231.98	3.20E-U2	
1230.744	1205.811	2.79E-02	
1237.078	1227.007	3.40E-02	
1240.901	1220.294	1.02L-02 7.56E-03	B(HCOH)
1255.928	1240.404	1.30E-03	
1261 427	1240.345	1.23E 02	
1275 725	1246 323	6 37F-03	
1285 449	1268 977	1.83F-03	
1297 621	1260.377	3.65F-02	
1306 216	1277 084	1.65E-02	В(НСОН), В(НССН)
		<u> </u>	

Table S19: Vibrational mode assignment of [α-bn16+H]⁺ ion. (E)

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
971.81	961.28	6.94E-03	β(НССН), β(СНЗ)
977.30	948.91	3.40E-01	Bending H+ on Acetyl Oxygen, β (NH)
980.30	964.71	3.77E-03	β(HCCH), β(CO)
1011.42	999.10	1.53E-01	β(НССН), β(СНЗ)
1014.17	1008.76	6.81E-03	Bending H+ on Acetyl Oxygen, β(CH3)
1023.63	1025.06	2.74E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1048.42	1022.47	1.12E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1050.18	1036.21	8.69E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1060.64	1036.00	7.14E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1066.73	1037.74	9.40E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1071.02	1052.77	7.19E-02	β(HCCH), β(CO), ν(CO)
1078.05	1058.68	7.62E-02	Bending H+ on Acetyl Oxygen, β(HCCH), β(CO)
1082.41	1068.65	4.70E-01	β(CO), vas(COC)
1089.59	1083.52	6.14E-03	β(СО), β(НССН)
1090.99	1076.92	3.52E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(CO)
1101.08	1096.44	1.62E-02	β(CO), vs(COC) in glycosidic linkage
1103.59	1094.94	7.58E-03	β(CO), vs(COC) in glycosidic linkage
1111.95	1100.70	9.85E-02	β(CO), vs(COC) in glycosidic linkage
1113.51	1103.42	4.41E-02	vas(COC), β(CO)
1122.36	1108.87	8.77E-02	vas(COC), β(CO), ν(CO)
1130.10	1110.53	7.06E-02	Bending H+ on Acetyl Oxygen, β(CO)
1134.52	1118.98	5.00E-01	vas(OCO), β(CO)
1136.43	1116.37	4.39E-01	vas(COC) in glycosidic linkage, v(CO)
1140.37	1128.98	1.51E-02	β(HCCH), β(CO), ν(CO)
1146.01	1131.28	9.06E-01	vas(COC), β(CO), ν(CO)
1155.09	1142.07	4.32E-02	β(CH3), β(CO), ν(CO)
1157.61	1138.23	6.94E-02	v(CC), vas(COC) in glycosidic linkage, v(CO)
1162.67	1142.40	4.01E-02	β(CO) <i>,</i> τ(CH2), ν(CO)
1171.10	1153.59	2.15E-02	β(СО), β(СНЗ)
1173.98	1154.91	2.86E-02	v(CC), vas(COC) in glycosidic linkage, v(CO)
1176.53	1166.00	2.30E-02	β(CO), ν(CO)
1186.33	1165.75	2.58E-02	v(CN), vas(COC), β(CC)
1192.93	1180.68	6.90E-02	β(СО), β(СНЗ)
1203.09	1191.04	7.10E-02	vas(COC) in glycosidic linkage, δ(HCCH)
1214.44	1197.41	2.93E-02	vas(COC) in glycosidic linkage, δ (HCCH), β (CO)
1216.66	1204.16	2.52E-01	vas(COC) in glycosidic linkage, δ (HCCH), β (CO)
1223.81	1219.54	2.95E-01	δ(ΗСΟΗ), β(CO)
1226.82	1217.44	1.94E-01	δ(ΗСΟΗ), β(CO)
1230.92	1215.36	1.28E-02	δ(HCOH), β(CO), τ(CH2)
1255.00	1242.72	8.83E-02	δ(ΗСΟΗ), β(CO), β(CH3)
1257.24	1252.78	1.78E-02	δ(ΗСΟΗ)
1268.00	1241.66	1.77E-03	Bending H+ on Acetyl Oxygen, β (HCCH), β (CO)
1269.57	1253.25	1.19E-01	Bending H+ on Acetyl Oxygen, δ (HCOH)
1281.81	1255.88	5.38E-03	δ(HCOH), β(CO), δ(HCCH), τ(CH2)
1284.99	1256.83	9.56E-02	δ(ΗССΗ), δ(ΗСΟΗ)
1295.21	1265.17	3.58E-03	δ(HCCH), δ(HCOH)

Table S20: Vibrational mode assignment of [α-bn16+H]*) ion (²E).

Harmonic Vib	Anharmonic Vib	Intensity	Assignment
971.805	961.281	9.07E-03	β(ΗСΟΗ), β(ΗССΗ), β(СНЗ)
977.303	948.905	6.34E-02	Bending H+ on Acetyl Oxygen, β(HCOH), β(HCNH)
980.302	964.713	6.68E-03	β(НСОН), β(НССН)
1011.423	999.101	4.26E-02	β(НССН), β(СНЗ)
1014.167	1008.762	8.98E-03	Bending H+ on Acetyl Oxygen, β (CH3)
1023.632	1025.062	1.80E-02	Bending H+ on Acetyl Oxygen, β(CH3)
1048.423	1022.469	1.15E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(CH2)
1050.178	1036.208	3.21E-02	Bending H+ on Acetyl Oxygen, β (CH3)
1060.641	1036.002	2.91E-02	Bending H+ on Acetyl Oxygen, β(CH3), β(CH2)
1066.734	1037.735	3.34E-02	Bending H+ on Acetyl Oxygen, β (CH3)
1071.021	1052.766	2.92E-02	β(НСОН), β(НССН)
1078.053	1058.678	3.00E-02	Bending H+ on Acetyl Oxygen, β (HCOH)
1082.414	1068.65	7.46E-02	Bending H+ on Acetyl Oxygen, β(HCOH), v(CC)
1089.593	1083.523	8.53E-03	β(НСОН), β(НССН)
1090.985	1076.915	2.04E-02	Bending H+ on Acetyl Oxygen, β(HCOH)
1101.082	1096.435	1.39E-02	β(НСОН), β(НССН)
1103.588	1094.938	9.48E-03	β(НСОН), β(НССН)
1111.954	4400 704	3.42E-02	β (HCOH), β (HCCH), β (HCNH), vs(COC) in glycosidic
	1100.701	0.005.00	
1113.506	1103.418	2.29E-02	β (HCOH), β (HCCH), β (CH2)
1122.36	1108.867	3.22E-02	
1130.1	1110.532	2.89E-02	
1134.52	1118.977	7.70E-02	
1136.434	1116.372	7.21E-02	
1140.372	1128.981	1.34E-02	
1146.014	1131.282	1.04E-01	
1155.089	1142.007	2.20E-02	
1162.666	1142 4	2.07E-02	
1102.000	1142.4	2.10E-02	
1172 001	1153.595	1.00E-02	
1176 531	1166 003	1.65E-02	v(cO), p(hcOH), p(hcCH)
1186 325	1165 752	1.05E-02	v(cO), p(ncOn), p(ncOn)
1192 927	1180.68	2 86F-02	
1203 086	1191 04	2 90F-02	vas(COC) in glycosidic linkage $\beta(HCOH) \beta(HCCH)$
1214.443	1197 407	1.86F-02	vas(COC) in glycosidic linkage, β (HCOH), β (HCCH)
1216.66	1204.155	5.46E-02	vas(COC) in glycosidic linkage, β (HCOH), β (HCCH)
1223.806	1219.54	5.91E-02	B(HCOH). B(HCCH)
1226.815	1217.44	4.79E-02	B(HCOH), B(HCCH)
1230.92	1215.355	1.23E-02	β(HCOH), β(HCCH), β(CH2)
1254.998	1242.717	3.23E-02	β(HCOH), β(HCCH)
1257.243	1252.782	1.45E-02	В(НСОН), В(НССН)
1268.001	1241.658	4.58E-03	β(ΗCOH), β(ΗCCH), β(ΗCNH)
1269.565	1253.25	3.75E-02	β(ΗСΟΗ), β(ΗССΗ)
1281.805	1255.879	7.98E-03	β(НСОН), β(НССН), β(СН2)
1284.993	1256.828	3.36E-02	β(ΗСΟΗ), β(ΗССΗ), β(ΗСΝΗ)
1295.207	1265.168	6.51E-03	β(НСОН), β(НССН)

Table S21: Vibrational mode assignment of [β-bn16+H]⁺ ion (E').

970.00 955.97 3.97-02 r(CH2), δ(HCOH), β(CH3) 972.52 958.34 1.36E-01 r(CH2), δ(HCOH), β(CH3) 995.16 980.07 8.52E-02 δ(HCOH), δ(HCCH) 1005.34 993.56 6.07E-03 r(CH2), δ(CO), β(CH3), Bending H+ on Acetyl Oxygen 1016.26 1007.32 1.18E-01 δ(HCCH), β(CH3) 1054.11 1050.13 9.04E-02 β(CH3), β(CO) 1060.37 1058.93 2.32E-01 β(CH3), β(CO) 1071.84 1064.23 9.06E-01 β(CH3), β(CO) 1077.41 1058.79 8.53E-01 β(CH3), β(CO) 1077.41 1058.79 8.53E-01 β(CO), v(HCCH) 1081.75 1069.76 2.94E-01 β(CO), δ(HCOH), vag(COC), v(CC) 1089.95 1073.09 2.00E-01 β(CO), δ(HCOH), vag(COC), v(CC) 1094.16 1080.43 3.47E-02 v[HCCH], δ(HCOH) 1104.92 1100.65 8.18E-02 v[HCCH], δ(HCOH) 1104.92 1100.65 8.18E-02 v(CO), β(CO) 1138.88 1125.85 <th>Harmonic Vib</th> <th>Anharmonic Vib</th> <th>Intensity</th> <th>Assignment</th>	Harmonic Vib	Anharmonic Vib	Intensity	Assignment
972.52 958.34 1.36E-0.1 r(CH2), δ(HCCH), δ(HCCH) 995.16 980.07 8.52E-0.2 δ(HCOH), δ(HCCH) 1005.34 993.56 6.07E-0.3 r(CH2), β(CO), β(CH3), Bending H+ on Acetyl Oxygen 1016.26 1007.32 1.18E-0.1 δ(HCCH), β(CH3) 1054.11 1056.13 9.04E-0.2 β(CH3), β(CO) 1060.37 1058.93 2.32E-0.1 β(CH3), β(CO) 1071.84 1064.23 9.06E-0.1 β(CH3), β(CO) 1077.41 1058.79 8.53E-0.1 β(CH3), β(CO), V(CC) 1081.75 1069.76 2.94E-0.1 β(CO), δ(HCOH), vas(COC), V(CC) 1082.95 1073.09 2.00E-0.1 β(CO), δ(HCOH), vas(COC), V(CC) 1084.55 1080.43 3.47E-0.2 β(CH3), V(HCCH), δ(HCOH) 1101.23 1092.60 4.53E-0.1 V(HCCH), δ(HCOH) 1104.92 1100.65 8.18E-0.2 V(HCCH), δ(HCOH) 1104.92 1100.65 8.18E-0.2 V(HCCH), δ(HCOH) 1105.43 1.25E-0.1 V(CO), β(CO) 1126.35 1.48E-0	970.00	955.97	3.97E-02	τ(CH2), δ(HCOH), β(CH3)
995.16980.078.52 $\delta(HCOH), \delta(HCCH)$ 1005.34993.566.07E-03 $\tau(CH2), \beta(CO), \beta(CH3), Bending H+ on Acetyl Oxygen1015.261007.321.18E-01\delta(HCCH), \beta(CH3)1019.881013.408.94E-02\delta(HCCH), \beta(CO)1060.371058.932.32E-01\beta(CH3), \beta(CO)1071.841064.239.06E-01\beta(CH3), \beta(CO)1077.411058.798.53E-01\beta(CH3), \beta(CO)1077.411058.792.00E-01\beta(CO), \delta(HCOH), vs(CO), v(CC)1089.951073.062.00E-01\beta(CO), \delta(HCOH), vs(CO), v(CC)1089.951073.072.00E-01\beta(CO), \delta(HCOH), vs(CO), v(CC)1094.161080.433.47E-02\beta(CH3), \theta(HCOH)1104.921100.658.18E-02v(HCCH), \delta(HCOH)1104.921100.658.18E-02v(HCCH), \delta(HCOH)1108.691099.773.01E-01vas(COC) in g(Yoci ici linkage, \delta(HCOH)1116.801099.512.57E-01vas(COC), \beta(CO)1138.881125.851.48E-02v(CO), \beta(CO)1139.561127.007.51E-02v(CO), \beta(CO)1139.551127.007.51E-02v(CO), \beta(CO)1139.551127.007.51E-02v(CO), \beta(CO)1145.361128.614.53E-03\beta(CO), v(HCCH)1150.321138.516.55E-02v(HCCH), \delta(HCCH), v(CO)1145.551.24E-02\delta(HCCH), \delta(HCCH)1151.331148.313.39E-01vas(COC), \beta(CO)1145.561129.61$	972.52	958.34	1.36E-01	τ(CH2), δ(HCOH), β(CH3)
1005.34 993.56 6.07P-03 τ(CH2), β(CH3), Bending H+ on Acetyl Oxygen 1016.26 1007.32 1.18E-01 δ(HCCH), β(CH3) 1019.88 1013.40 8.94E-02 δ(HCCH), β(CH3) 1054.11 1050.13 9.04E-02 β(CH3), β(CO) 1060.37 1058.93 2.32E-01 β(CH3), β(CO) 1077.14 1058.79 8.53E-01 β(CH3), β(CO), v(HCCH3) 1077.41 1058.79 8.53E-01 β(CH3), b(CO), v(HCCH3) 1081.75 1069.76 2.94E-01 β(CO), δ(HCOH), vas(COC), v(CC) 1094.16 1080.43 3.47E-02 β(CH3), w(HCCH), δ(HCOH) 1010.23 1092.60 4.53E-01 v(HCCH), δ(HCOH) 1101.23 1092.60 4.53E-01 v(HCCH), δ(HCOH) 1108.95 1097.97 3.01E-01 vas(COC) in g/vosidic linkage, 6(HCOH) 1108.89 1097.97 3.01E-01 vas(COC), β(CO) 1133.29 1115.61 1.95E-01 v(CO), β(CO) 1138.88 1125.85 1.48E-02 v(CO), β(CO) 1139.56	995.16	980.07	8.52E-02	δ(HCOH), δ(HCCH)
1016.261007.321.18F-01 δ [HCCH), β [CH3]1019.881013.408.94E-02 δ [HCCH), β [CH3]1054.111050.139.04E-02 β (CH3), β [CO)1060.371058.932.32F-01 β [CH3], β [CO)1071.841064.239.06E-01 β [CH3], β [CO)1077.411058.798.53F-01 β [CO), δ [HCCH), σ [CO)1087.741058.798.53F-01 β [CO), δ [HCCH), σ [CO), δ [HCCH)1081.751069.762.94E-01 β (CO), δ [HCCH), σ [CO)1094.161080.433.47F-02 β [CH3], ν [HCCH), δ [HCCH)1101.231092.604.53E-01 ν [HCCH), δ [HCCH)1104.921100.658.18E-02 ν [HCCH), δ [HCCH)1108.691097.973.01E-01 ν as(COC), μ [CC)1126.791112.928.00E-02 β (CO), ν [HCCH)1131.291115.611.95E-01 ν (CO), β (CO)1138.881122.851.48E-02 ν (CO), β (CO)1138.561127.007.51E-02 ν (CO), β (CO)1145.961129.614.53E-03 β (CO), ν (HCCH)1156.951144.143.72E-02 ν (HCCH), δ (HCOH)1156.951144.143.72E-02 ν (HCCH), δ (HCOH)1156.951144.143.72E-02 σ (HCCH), δ (HCOH)1156.951144.143.72E-02 σ (HCCH), δ (HCOH)1170.281151.011.40E-01 δ (HCCH), σ (HCOH)1174.631162.558.03E-02 δ (HCCH), σ (CO)1174.63	1005.34	993.56	6.07E-03	τ(CH2), β(CO), β(CH3), Bending H+ on Acetyl Oxygen
1019.881013.408.94F-02 δ (HCCH), β (CH3)1054.111050.139.04F-02 β (CH3), β (CO)1071.841064.239.06F-01 β (CH3), β (CO)1074.321068.921.16F-01 β (CH3), β (CO)1077.411058.798.53F-01 β (CH3), β (CO), ν (HCCH3)1081.751069.762.94F-01 β (CO), δ (HCOH), ν as(COC), ν (CC)1089.951073.092.00F-01 β (CO), δ (HCOH), ν (CC), ν (CC)1094.161080.433.47F-02 β (CH3), ν (HCCH), δ (HCOH)1101.231092.604.53F-01 ν (HCCH), δ (HCOH)1104.921100.658.18F-02 ν (HCCH), δ (HCOH)1108.691097.973.01E-01 ν as(COC) in glycostide linkage, δ (HCOH)1116.801099.512.57F-01 ν (CO), β (CO)1126.791112.928.00F-02 β (CO), ν (HCCH)1138.811125.851.48F-02 ν (CO), β (CO)1139.561127.007.51F-02 ν (CO), β (CO)1135.321138.417.2E-02 β (CO), ν (HCCH)1150.421138.417.2E-02 β (HCH), ν (CO)1164.611149.105.69F-01 ν (NC), ν (CO)1170.281151.011.40F-01 δ (HCCH), ν (CO)1170.281151.011.40F-01 δ (HCCH), ν (CO)1174.631163.636.27F-02 δ (HCCH), ν (CO)1174.641129.558.03F-02 δ (HCCH), ν (CO)1170.281151.011.40F-01 δ (HCCH), ν (CO) <tr<< td=""><td>1016.26</td><td>1007.32</td><td>1.18E-01</td><td>δ(НССН), β(СНЗ)</td></tr<<>	1016.26	1007.32	1.18E-01	δ(НССН), β(СНЗ)
1054.111050.139.04F-02 β (CH3), β (CO)1060.371058.932.32E-01 β (CH3), β (CO)1071.841064.239.06F-01 β (CH3), β (CO)1077.411058.798.53E-01 β (CH3), β (CO), (HCCH3)1081.751069.762.94F-01 β (CO), δ (HCOH), vas(COC), V (CC)1089.951073.092.00E-01 β (CH3), ν (HCCH), δ (HCOH)1101.231092.604.53E-01 V (HCCH), δ (HCOH)1101.231092.604.53E-01 V (HCCH), δ (HCOH)1104.921100.658.18E-02 v (HCCH), δ (HCOH)1104.921100.658.18E-02 v (HCCH), δ (HCOH)1105.601099.512.57E-01 v (S(CO) (β (CC))1126.791112.928.00E-02 β (CO), v (HCCH)1131.291115.611.55E-01 v (CO), β (CO)1135.651127.007.51E-02 v (CO), β (CO)1145.961129.614.53E-03 β (CO), v (HCCH)1150.421138.417.72E-02 v (HCCH), δ (HCCH)1153.321138.516.55E-02 v (HCCH), δ (HCCH)1153.321138.516.55E-02 v (HCCH), δ (HCCH)1164.611149.105.69E-01 v (CO), β (HCCH)1170.281151.011.40E-01 δ (HCCH), δ (HCCH)1179.321162.558.03E-02 δ (HCCH), β (HCCH)1179.321162.558.03E-02 δ (HCCH), β (HCCH)1179.331162.558.03E-02 δ (HCCH), β (HCCH)1179.34117	1019.88	1013.40	8.94E-02	δ(HCCH), β(CH3)
1060.371058.932.32E-01 $\beta(CH3), \beta(CO)$ 1071.841064.239.06E-01 $\beta(CH3), \beta(CO)$ 1077.411058.798.53E-01 $\beta(CH3), \beta(CO), v(HCCH3)$ 1081.751069.762.94E-01 $\beta(CO), \delta(HCOH), vas(COC), v(CC)$ 1089.951073.092.00E-01 $\beta(CO), \delta(HCOH), vas(COC), v(CC)$ 1094.161080.433.47E-02 $\beta(CH3), v(HCCH), \delta(HCOH)$ 1101.231092.604.53E-01 $v(HCCH), \delta(HCOH)$ 1104.921100.658.18E-02 $v(HCCH), \delta(HCOH)$ 1108.691099.512.57E-01 $vas(COC), \beta(CC)$ 1126.791112.928.00E-02 $\beta(CO), v(HCCH)$ 1131.291115.611.95E-01 $v(CO), \beta(CO)$ 1133.881125.851.48E-02 $v(CO), \beta(CO)$ 1133.881127.007.51E-02 $p(CO), v(HCCH)$ 1150.421138.417.72E-02 $\beta(CH3), \beta(CO), v(HCCH)$ 1153.321138.516.55E-02 $v(HCCH), \delta(HCOH)$ 1163.361144.813.93E-01 $vas(COC), \beta(HCO)$ 1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), p(CO)$ 1174.631163.636.27E-02 $\delta(HCOH), p(CO)$ 1179.321162.558.03E-02 $\delta(HCCH), p(CO)$ 1174.631163.646.27E-02 $\delta(HCCH), p(CO)$ 1174.631163.646.27E-02 $\delta(HCCH), p(CO)$ 1174.631163.656.27E-02 $\delta(HCCH), p(CH3)$ 1179.321162.558.03E-02 $\delta(HCC$	1054.11	1050.13	9.04E-02	β(CH3), β(CO)
1071.841064.239.06E-01 β (CH3)1074.321068.921.16E-01 β (CH3), β (CO)1077.411058.798.53E-01 β (CG), γ (HCCH3)1081.751069.762.94E-01 β (CO), δ (HCOH), vas(COC), v(CC)1089.951073.092.00E-01 β (CO), δ (HCOH), vas(COC), v(CC)1094.161080.433.47E-02 β (CH3), v(HCCH), δ (HCOH)1101.231092.604.53E-01v(HCCH), δ (HCOH)1104.92110.658.18E-02v(HCCH), δ (HCOH)1104.92110.658.18E-02v(HCCH), δ (HCOH)1105.691097.973.01E-01vas(COC), β (CC)1126.791112.928.00E-02 β (CO), v(HCCH)1131.291115.611.95E-01v(CO), β (CO)1138.881125.851.48E-02v(CO), β (CO)1138.561127.007.51E-02v(CO), β (CO)1145.961129.614.53E-03 β (CO), v(HCCH)1150.421138.417.72E-02 v (HCCH), δ (HCOH)1153.351144.143.72E-02v(HCCH), δ (HCOH)1156.951144.143.72E-02 v (HCCH), δ (HCOH)1170.281151.011.40E-01 δ (HCCH), v(CO)1174.631163.636.27E-02 δ (HCCH), v(CO	1060.37	1058.93	2.32E-01	β(CH3), β(CO)
1074.321068.921.16F-01 β (CH3), β (CO)1077.411058.798.53F-01 β (CO), δ (HCOH), vs(CO), v(HCCH3)1081.751069.762.94F-01 β (CO), δ (HCOH), vs(CO), v(CC)1089.951073.092.00F-01 β (CO), δ (HCOH), vs(CO), v(CC)1094.161080.433.47F-02 β (CH3), v(HCCH), δ (HCOH)1101.231092.604.53F-01v(HCCH), δ (HCOH)1104.921100.658.18F-02v(HCCH), δ (HCOH)1108.691097.973.01F-01vas(COC) in glycosidic linkage, δ (HCOH)1116.801099.512.57F-01vas(COC), β (CC)1126.791112.928.00F-02 β (CO), v(HCCH)1131.291115.611.95F-01v(CO), β (CO)1138.881125.851.48F-02v(CO), β (CO)1145.961127.007.51F-02v(CO), β (CO)1145.961127.007.51F-02v(CO), β (CO)1135.516.55F-02v(HCCH), δ (HCOH)1156.321138.516.55F-02v(HCCH), δ (HCOH)1156.351144.143.72F-02v(HCCH), δ (HCOH)1163.361148.813.93F-01vas(COC), δ (HCOH), v(CO)1170.281151.011.40F-01 δ (HCCH), v(CO)1174.631163.636.27F-02 δ (HCOH), β (HCH)1181.391170.921.14F-01 δ (HCCH), v(CO), δ (HCOH)1193.211177.247.74E-03 δ (HCCH), v(CO), δ (HCOH)1208.011188.286.60F-02 δ (HCOH), β (HCOH)1	1071.84	1064.23	9.06E-01	β(CH3)
1077.411058.798.53E-01 $\beta(CH3), \beta(CO), v(HCCH3)$ 1081.751069.762.94E-01 $\beta(CO), \delta(HCOH), vag(COC), v(CC)$ 1089.951073.092.00E-01 $\beta(CO), \delta(HCOH), v(CC), v(CO)$ 1094.161080.433.47E-02 $\beta(CH3), v(HCCH), \delta(HCOH)$ 1101.231092.604.53E-01 $v(HCCH), \delta(HCOH)$ 1104.921100.658.18E-02 $v(HCCH), \delta(HCOH)$ 1108.691097.973.01E-01 $vas(COC)$ in glycosidic linkage, $\delta(HCOH)$ 1116.801099.512.57E-01 $vas(COC), \beta(CC)$ 1125.791112.928.00E-02 $\beta(CO), v(HCCH)$ 1131.291115.611.95E-01 $v(CO), \beta(CO)$ 1138.881125.851.48E-02 $v(CO), \beta(CO)$ 1139.561127.007.51E-02 $y(CO), v(HCCH)$ 1150.421138.417.72E-02 $\beta(CO), v(HCCH)$ 1153.321138.516.55E-02 $v(HCCH), \delta(HCOH)$ 1156.951144.143.72E-02 $v(HCCH), \delta(HCOH)$ 1156.951144.143.72E-02 $\delta(HCOH), \delta(HCOH)$ 1156.951144.143.72E-02 $\delta(HCOH), \delta(HCOH)$ 1162.611149.10 $\delta(BCC), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), \beta(CO)$ 1179.321162.558.03E-02 $\delta(HCCH), \beta(HCCH)$ 1181.391170.921.14E-01 $\delta(HCCH), \beta(HCCH)$ 1192.111177.147.74E-03 $\delta(HCCH), \beta(HCCH)$ 1223.561294.487.28E-02<	1074.32	1068.92	1.16E-01	β(CH3), β(CO)
1081.751069.762.94E-01 $\beta(CO), \delta(HCOH), vas(COC), v(CC)1089.951073.092.00E-01\beta(CO), \delta(HCOH), v(CC), v(CO)1094.161080.433.47E-02\beta(CH3), v(HCCH), \delta(HCOH)1101.231092.604.53E-01v(HCCH), \delta(HCOH)1104.921100.658.18E-02v(HCCH), \delta(HCOH)1108.691097.973.01E-01vas(COC) in glycosidic linkage, \delta(HCOH)1116.801099.512.57E-01vas(COC), \beta(CC)1126.791112.928.00E-02\beta(CO), v(HCCH)1131.291115.611.95E-01v(CO), \beta(CO)1138.881125.851.48E-02v(CO), \beta(CO)1135.961127.007.51E-02v(CO), \beta(CO)1135.961129.614.53E-03\beta(CO), v(HCCH)1150.421138.417.72E-02\beta(CH3), \beta(CO), v(HCCH)1153.321138.516.55E-02v(HCCH), \delta(HCOH)1163.361144.813.93E-01vas(COC), \delta(HCOH)1163.361148.813.93E-01vas(COC), \delta(HCOH), v(CO)1170.281151.011.40E-01\delta(HCCH), v(CO)1170.281151.011.40E-01\delta(HCCH), v(CO), \delta(HCOH)1181.391170.921.14E-01\delta(HCCH), v(CO), \delta(HCOH)1181.391170.921.14E-01\delta(HCCH), v(CO), \delta(HCOH)1221.571224.912.61E-01\delta(HCCH), v(CO), \delta(HCOH)1231.651298.777.98E-02\delta(HCOH), \delta(HCCH), \delta(HCCH)1231.651294.847.28E-02\delta(HCOH), \delta(HCCH), $	1077.41	1058.79	8.53E-01	β(CH3), β(CO), ν(HCCH3)
1089.951073.092.00E-01 $β(CO), \delta(HCOH), v(CC). v(CO)$ 1094.161080.433.47E-02 $β(CH3), v(HCCH), \delta(HCOH)$ 1101.231092.604.53E-01 $v(HCCH), \delta(HCOH)$ 1104.921100.658.18E-02 $v(HCCH), \delta(HCOH)$ 1108.691097.973.01E-01 $vas(COC)$ in glycosidic linkage, $\delta(HCOH)$ 1116.791112.928.00E-02 $β(CO), v(HCCH)$ 1131.291115.611.95E-01 $v(CO), \beta(CO)$ 1138.881125.851.48E-02 $v(CO), \beta(CO)$ 1139.561127.007.51E-02 $v(CO), \beta(CO)$ 1135.321138.417.72E-02 $\beta(CO), v(HCCH)$ 1153.321138.516.55E-02 $v(HCCH), \delta(HCOH)$ 1163.661144.143.72E-02 $v(HCCH), \delta(HCOH)$ 1163.361148.813.93E-01 $vas(COC), \delta(HCOH)$ 1164.611149.105.69E-01 $v(NC), v(CO)$ 1179.321162.558.03E-02 $\delta(HCCH), v(CO)$ 1179.331163.636.27E-02 $\delta(HCCH), v(CO)$ 1179.341163.636.02F-02 $\delta(HCCH), v(CO)$ 1128.541199.877.98E-02 $\delta(HCCH), v(CO)$ 1221.561199.877.98E-02 $\delta(HCCH), v(CO)$ 123.561294.487.28E-02 $\delta(HCCH), \delta(HCCH)$ 123.651204.487.28E-02 $\delta(HCCH), \delta(HCCH)$ 123.551204.487.28E-02 $\delta(HCCH), \delta(HCCH)$ 124.61149.225.44E-01 $\delta(HCCH), \delta(HCCH)$ 125.871224.912.61E-01 $\delta(HCCH), \delta(HC$	1081.75	1069.76	2.94E-01	β(CO), δ(HCOH), vas(COC), v(CC)
1094.161080.43 $3.47E-02$ β (CH3), v(HCCH), δ (HCOH)1101.231092.60 $4.53E-01$ v(HCCH), δ (HCOH)1104.921100.65 $8.18E-02$ v(HCCH), δ (HCOH)1108.691097.97 $3.01E-01$ vas(COC) in glycosidic linkage, δ (HCOH)11168.01099.51 $2.57E-01$ vas(COC), β (CC)1126.791112.92 $8.00E-02$ β (CO), v(HCCH)1131.291115.61 $1.95E-01$ v(CO), β (CO)1138.881125.85 $1.48E-02$ v(CO), β (CO)1145.961129.61 $4.53E-03$ β (CO), v(HCCH)1150.421138.41 $7.72E-02$ γ (CO), β (HCOH)1153.321138.51 $6.55E-02$ v(HCCH), δ (HCOH)1166.951144.14 $3.72E-02$ v(HCCH), δ (HCOH)1163.361148.81 $3.93E-01$ vas(COC), δ (HCOH), v(CO)1170.281151.01 $1.40E-01$ δ (HCCH), v(CO)1170.281151.01 $1.40E-01$ δ (HCCH), v(CO)1170.281151.01 $1.40E-01$ δ (HCCH), v(CO)1170.281162.55 $8.03E-02$ δ (HCCH), b(CH)1183.391170.92 $1.14E-01$ δ (HCCH), v(CO), δ (HCOH)1193.111177.14 $7.74E-03$ δ (HCCH), v(CO), δ (HCOH)1221.57124.48 $7.28E-02$ δ (HCOH), δ (HCCH)1225.871252.07 $5.24E-02$ δ (HCOH), δ (HCCH)1241.621224.50 $6.54E-01$ δ (HCOH), δ (HCCH)1255.871250.7 $5.24E-02$ δ (HCOH), δ (HCCH) </td <td>1089.95</td> <td>1073.09</td> <td>2.00E-01</td> <td>β(CO), δ(HCOH), ν(CC). ν(CO)</td>	1089.95	1073.09	2.00E-01	β(CO), δ(HCOH), ν(CC). ν(CO)
1101.231092.604.53E-01v(HCCH), δ (HCOH)1104.921100.658.18E-02v(HCCH), δ (HCOH)1108.691097.973.01E-01vas(COC) in glycosidic linkage, δ (HCOH)1116.801099.512.57E-01vas(COC), β (CO)1126.791112.928.00E-02 β (CO), v(HCCH)1131.291115.611.95E-01v(CO), β (CO)1138.881125.851.48E-02v(CO), β (CO)1139.561127.007.51E-02v(CO), β (CO)1145.961129.614.53E-03 β (CO), v(HCCH)1150.421138.516.55E-02v(HCCH), δ (HCOH)1156.951144.143.72E-02v(HCCH), δ (HCOH)1163.361148.813.93E-01vas(COC), δ (HCOH), v(CO)1170.281151.011.40E-01 δ (HCCH), v(CO)1174.631163.636.27E-02 δ (HCCH), v(CO), δ (HCOH)1193.211162.558.03E-02 δ (HCCH), v(CO), δ (HCOH)1193.231162.558.03E-02 δ (HCCH), v(CO), δ (HCOH)1193.241129.241.14E-01 δ (HCCH), v(CO)1174.631163.636.27E-02 δ (HCCH), v(CO), δ (HCOH)1193.211177.147.74E-03 δ (HCCH), v(CO), δ (HCOH)1208.011188.286.60E-02 δ (HCCH), v(CO), δ (HCOH)1215.861199.877.98E-02 δ (HCOH), δ (HCCH)1223.101248.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241	1094.16	1080.43	3.47E-02	β(CH3), ν(HCCH), δ(HCOH)
1104.92 1100.65 8.18E-02 ν(HCCH), δ(HCOH) 1108.69 1097.97 3.01E-01 vas(COC) in glycosidic linkage, δ(HCOH) 1116.80 1099.51 2.57E-01 vas(COC), β(CC) 1126.79 1112.61 1.95E-01 v(CO), β(CO) 1138.88 1125.85 1.48E-02 v(CO), β(CO) 1139.56 1127.00 7.51E-02 v(CO), β(CO) 1145.96 1129.61 4.53E-03 β(CO), v(HCCH) 1150.42 1138.41 7.72E-02 β(CH3), β(CO), v(HCCH) 1155.95 1144.14 3.72E-02 v(HCCH), δ(HCOH) 1156.95 1144.14 3.72E-02 v(HCCH), δ(HCOH) 1164.61 1149.10 5.69E-01 v(NC), v(CO) 1170.28 1151.01 1.40E-01 δ(HCOH), v(CO) 1174.63 1163.63 6.27E-02 δ(HCCH), v(CO), δ(HCOH) 1179.32 1162.55 8.03E-02 δ(HCCH), v(CO), δ(HCOH) 1179.32 1162.55 8.03E-02 δ(HCCH), v(CO), δ(HCOH) 1181.39 1170.92 1.4E-01<	1101.23	1092.60	4.53E-01	ν(HCCH), δ(HCOH)
1108.69 1097.97 3.01E-01 vas(COC) in glycosidic linkage, δ(HCOH) 1116.80 1099.51 2.57E-01 vas(COC), β(CC) 1126.79 1112.92 8.00E-02 β(CO), v(HCCH) 1131.29 1115.61 1.95E-01 v(CO), β(CO) 1138.88 1122.85 1.48E-02 v(CO), β(CO) 1145.96 1129.61 4.53E-03 β(CO), v(HCCH) 1150.42 1138.41 7.72E-02 β(CA), v(HCCH), δ(HCOH) 1155.95 1144.14 3.72E-02 v(HCCH), δ(HCOH) 1163.36 1148.81 3.93E-01 vas(COC), δ(HCOH), v(CO) 1164.61 1149.10 5.69E-01 v(NC), v(CO) 1170.28 1151.01 1.40E-01 δ(HCCH), v(CO), δ(HCOH) 1179.32 1162.55 8.03E-02 δ(HCCH), v(CO), δ(HCOH) 1181.39 1170.92 1.14E-01 δ(HCCH), v(CO), δ(HCOH) 1181.39 1170.92 1.14E-01 δ(HCCH), v(CO), δ(HCOH) 1192.11 1177.14 7.74E-03 δ(HCCH), v(CO), δ(HCOH) 1192.13 1.14E-	1104.92	1100.65	8.18E-02	ν(HCCH), δ(HCOH)
1116.801099.512.57E-01vas(COC), β (CC)1126.791112.928.00E-02 β (Co), v(HCCH)1131.291115.611.95E-01v(CO), β (CO)1138.881125.851.48E-02v(CO), β (CO)1139.561127.007.51E-02v(CO), β (CO)1145.961129.614.53E-03 β (CO), v(HCCH)1150.421138.117.72E-02 β (CH3), β (CO), v(HCCH)1155.321138.516.55E-02v(HCCH), δ (HCOH)1163.361148.813.93E-01vas(COC), δ (HCOH), v(CO)1164.611149.105.69E-01v(NC), v(CO)1170.281151.011.40E-01 δ (HCCH), v(CO)1174.631163.636.27E-02 δ (HCCH), v(CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), v(CO), δ (HCOH)1192.111177.147.74E-03 δ (HCCH), β (CO) in glycosidic linkage1223.91128.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.051241.723.41E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1263.251251.27 <td>1108.69</td> <td>1097.97</td> <td>3.01E-01</td> <td>vas(COC) in glycosidic linkage, δ(HCOH)</td>	1108.69	1097.97	3.01E-01	vas(COC) in glycosidic linkage, δ(HCOH)
1126.79 1112.92 8.00E-02 β(CO), v(HCCH) 1131.29 1115.61 1.95E-01 v(CO), β(CO) 1138.88 1125.85 1.48E-02 v(CO), β(CO) 1139.56 1127.00 7.51E-02 v(CO), β(CO) 1145.96 1129.61 4.53E-03 β(CO), v(HCCH) 1150.42 1138.41 7.72E-02 β(CH3), β(CO), v(HCCH) 1155.32 1138.51 6.55E-02 v(HCCH), δ(HCOH) 1156.95 1144.14 3.72E-02 v(HCCH), δ(HCOH) 1163.36 1148.81 3.93E-01 vas(COC), δ(HCOH), v(CO) 1164.61 1149.10 5.69E-01 v(NC), v(CO) 1170.28 1151.01 1.40E-01 δ(HCCH), v(CO), δ(HCOH) 1179.32 1162.55 8.03E-02 δ(HCCH), v(CO), δ(HCOH) 1181.39 1170.92 1.14E-01 δ(HCCH), v(CO) 1192.11 1177.14 7.74E-03 δ(HCCH), v(CO) 1208.01 1188.28 6.60E-02 δ(HCCH), vas(CCC) in glycosidic linkage 1221.5.7 124.91 2.61E-01 </td <td>1116.80</td> <td>1099.51</td> <td>2.57E-01</td> <td>vas(COC), β(CC)</td>	1116.80	1099.51	2.57E-01	vas(COC), β(CC)
1131.291115.611.95E-01v(CO), β(CO)1138.881125.851.48E-02v(CO), β(CO)1139.561127.007.51E-02v(CO), β(CO)1145.961129.614.53E-03 $β(CO), v(HCCH)$ 1150.421138.417.72E-02 $β(CH3), β(CO), v(HCCH)$ 1155.321138.516.55E-02v(HCCH), $\delta(HCOH)$ 1163.361144.813.93E-01vas(COC), $\delta(HCOH), v(CO)$ 1164.611149.105.69E-01v(NC), v(CO)1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1174.631162.558.03E-02 $\delta(HCCH), v(CO), \delta(HCOH)$ 1181.391170.921.14E-01 $\delta(HCCH), v(CO), \delta(HCOH)$ 1192.111177.147.74E-03 $\delta(HCCH), v(CO), \delta(HCOH)$ 1208.011188.286.60E-02 $\delta(HCCH), v(CO)$ 1215.861199.877.98E-02 $\delta(HCOH), \delta(HCCH)$ 1223.911218.924.12E-02 $\delta(HCOH), \delta(HCCH)$ 1231.651204.487.28E-02 $\delta(HCOH), \delta(HCCH)$ 1241.621224.506.54E-01 $\delta(HCOH), \delta(HCCH)$ 1255.871252.075.24E-02 $\delta(HCOH), \delta(HCCH), \beta(CH2)$ 1258.771240.619.64E-02 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251264.671.65E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta$	1126.79	1112.92	8.00E-02	β(CO), ν(HCCH)
1138.881125.851.48E-02v(CO), β(CO)1139.561127.007.51E-02v(CO), β(CO)1145.961129.614.53E-03 β (CO), v(HCCH)1150.421138.417.72E-02 β (CH3), β (CO), v(HCCH)1153.321138.516.55E-02v(HCCH), δ (HCOH)1155.951144.143.72E-02v(HCCH), δ (HCOH)1163.361148.813.93E-01vas(COC), δ (HCOH), v(CO)1164.611149.105.69E-01v(NC), v(CO)1170.281151.011.40E-01 δ (HCCH), v(CO)1174.631163.636.27E-02 δ (HCCH), v(CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), v(CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), v(CO), δ (HCOH)1208.011188.286.60E-02 δ (HCOH), v(CO)1215.861199.877.98E-02 δ (HCOH), v(CO)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-01 δ (HCOH), δ (HCCH)1255.871252.075.24E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-	1131.29	1115.61	1.95E-01	ν(CO), β(CO)
1139.561127.007.51E-02 $v(CO), \beta(CO)$ 1145.961129.614.53E-03 $\beta(CO), v(HCCH)$ 1150.421138.417.72E-02 $\beta(CH3), \beta(CO), v(HCCH)$ 1153.321138.516.55E-02 $v(HCCH), \delta(HCOH)$ 1156.951144.143.72E-02 $v(HCCH), \delta(HCOH)$ 1163.361148.813.93E-01 $vas(COC), \delta(HCOH), v(CO)$ 1164.611149.105.69E-01 $v(NC), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1174.631163.636.27E-02 $\delta(HCCH), v(CO), \delta(HCOH)$ 1181.391170.921.14E-01 $\delta(HCCH), v(CO), \delta(HCOH)$ 1192.111177.147.74E-03 $\delta(HCCH), v(CO)$ 1215.861199.877.98E-02 $\delta(HCOH), \delta(HCCH)$ 1223.911218.924.12E-02 $\delta(HCOH), \delta(HCCH)$ 1231.651204.487.28E-02 $\delta(HCOH), \delta(HCCH)$ 1241.621224.506.54E-01 $\delta(HCOH), \delta(HCCH)$ 1255.871252.075.24E-02 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH)$ 1269.301241.723.41E-02 $\delta(HCOH), \delta(HCCH)$ 1269.301241.723.41E-02 $\delta(HCOH), \delta(HCCH)$ 1269.371264.671.65E-01 $\delta(HCOH), \delta(HCCH)$ 1290.751264.671.65E-01 $\delta(HCOH), \delta$	1138.88	1125.85	1.48E-02	ν(CO), β(CO)
1145.961129.614.53E-03 $\beta(CO), v(HCCH)$ 1150.421138.417.72E-02 $\beta(CH3), \beta(CO), v(HCCH)$ 1153.321138.516.55E-02 $v(HCCH), \delta(HCOH)$ 1156.951144.143.72E-02 $v(HCCH), \delta(HCOH)$ 1163.361148.813.93E-01 $vas(COC), \delta(HCOH), v(CO)$ 1164.611149.105.69E-01 $v(NC), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1174.631163.636.27E-02 $\delta(HCCH), v(CO), \delta(HCOH)$ 1181.391170.921.14E-01 $\delta(HCCH), v(CO), \delta(HCOH)$ 1192.111177.147.74E-03 $\delta(HCCH), v(CO), \delta(HCOH)$ 1208.011188.286.60E-02 $\delta(HCCH), vas(COC)$ in glycosidic linkage1221.571214.912.61E-01 $\delta(HCOH), \delta(HCCH)$ 1231.651204.487.28E-02 $\delta(HCOH), \delta(HCCH)$ 1241.621224.506.54E-01 $\delta(HCOH), \delta(HCCH)$ 1255.871252.075.24E-02 $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1258.771240.619.64E-02 $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1258.771240.619.64E-02 $\delta(HCOH), \delta(HCCH), \beta(HCCH)$ 1269.301241.723.41E-02 $\delta(HCOH), \delta(HCCH), \beta(HCCH)$ 1281.941256.031.16E-02 $\delta(HCOH), \delta(HCCH), \delta(HCCH)$ 1281.941256.031.16E-02 $\delta(HCOH), \delta(HCCH), \tau(CH2)$ 1290.751264.671.65E-01 $\delta(HCOH), \delta(HCCH), \tau(CH2)$ 1295.871267.311.25E-01 $\delta(HCOH), \delta(HCCH), \tau(CH2)$	1139.56	1127.00	7.51E-02	ν(CO), β(CO)
1150.421138.417.72E-02 β (CH3), β (CO), ν (HCCH)1153.321138.516.55E-02 ν (HCCH), δ (HCOH)1156.951144.143.72E-02 ν (HCCH), δ (HCOH)1163.361148.813.93E-01 ν as(COC), δ (HCOH), ν (CO)1164.611149.105.69E-01 ν (NC), ν (CO)1170.281151.011.40E-01 δ (HCCH), ν (CO), δ (HCOH)1174.631163.636.27E-02 δ (HCCH), ν (CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), ν (CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), ν (CO)1215.861199.877.98E-02 δ (HCOH), β (CO)1215.861199.877.98E-02 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH)1255.871252.075.24E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)129.751264.671.65E-01 δ (HCOH), δ (HCCH)129.751264.671.65E-01 δ (HCOH), δ (HCCH)	1145.96	1129.61	4.53E-03	β(CO), ν(HCCH)
1153.321138.516.55E-02 $v(HCCH), \delta(HCOH)$ 1156.951144.143.72E-02 $v(HCCH), \delta(HCOH)$ 1163.361148.813.93E-01 $vas(COC), \delta(HCOH), v(CO)$ 1164.611149.105.69E-01 $v(NC), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1174.631163.636.27E-02 $\delta(HCCH), v(CO), \delta(HCOH)$ 1181.391170.921.14E-01 $\delta(HCCH), v(CO), \delta(HCOH)$ 1181.391170.921.14E-01 $\delta(HCCH), v(CO), \delta(HCOH)$ 1192.111177.147.74E-03 $\delta(HCCH), v(CO)$ 1208.011188.286.60E-02 $\delta(HCCH), v(CO)$ 1215.861199.877.98E-02 $\delta(HCOH), vas(COC)$ in glycosidic linkage1221.571214.912.61E-01 $\delta(HCOH), \delta(HCCH)$ 1231.651204.487.28E-02 $\delta(HCOH), \delta(HCCH)$ 1241.621224.506.54E-01 $\delta(HCOH), \delta(HCCH), \beta(CH2)$ 1255.871252.075.24E-02 $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1258.771240.619.64E-02 $\delta(HCOH), \delta(HCCH), \beta(CCH), \beta(CH2)$ 1263.251251.271.52E-01 $\delta(HCOH), \delta(HCCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(CCH), \beta(HCCH), \beta(HCC$	1150.42	1138.41	7.72E-02	β(CH3), β(CO), ν(HCCH)
1156.951144.143.72E-02ν(HCCH), δ(HCOH)1163.361148.813.93E-01vas(COC), δ(HCOH), v(CO)1164.611149.105.69E-01v(NC), v(CO)1170.281151.011.40E-01δ(HCCH), v(CO)1174.631163.636.27E-02δ(HCCH), v(CO), δ(HCOH)1179.321162.558.03E-02δ(HCCH), v(CO), δ(HCOH)1181.391170.921.14E-01δ(HCCH), v(CO), δ(HCOH)1192.111177.147.74E-03δ(HCCH), v(CO)1208.011188.286.60E-02δ(HCCH), v(CO)1215.861199.877.98E-02δ(HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01δ(HCOH), δ(HCCH)1223.911218.924.12E-02δ(HCOH), δ(HCCH)1241.621224.506.54E-01δ(HCOH), δ(HCCH)1255.871252.075.24E-02δ(HCOH), δ(HCCH), β(CH2)1258.771240.619.64E-02δ(HCOH), δ(HCCH)1263.251251.271.52E-01δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH)1295.871267.311.25E-01δ(HCOH), δ(HCCH)	1153.32	1138.51	6.55E-02	ν(HCCH), δ(HCOH)
1163.361148.813.93E-01vas(COC), δ(HCOH), v(CO)1164.611149.105.69E-01v(NC), v(CO)1170.281151.011.40E-01δ(HCCH), v(CO)1174.631163.636.27E-02δ(HCCH), v(CO), δ(HCOH)1179.321162.558.03E-02δ(HCCH), v(CO), δ(HCOH)1181.391170.921.14E-01δ(HCCH), v(CO), δ(HCOH)1192.111177.147.74E-03δ(HCCH), b(CH3), δ(HCOH)1208.011188.286.60E-02δ(HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01δ(HCOH), δ(HCCH)1223.911218.924.12E-02δ(HCOH), δ(HCCH)1231.651204.487.28E-02δ(HCOH), δ(HCCH), β(CH2)1255.871252.075.24E-02δ(HCOH), δ(HCCH), β(CH3)1258.771240.619.64E-02δ(HCOH), δ(HCCH), β(CH3)1263.251251.271.52E-01δ(HCOH), δ(HCCH), β(CCH)1269.301241.723.41E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH)1295.871267.311.25E-01δ(HCOH), β(HCCH)	1156.95	1144.14	3.72E-02	ν(HCCH), δ(HCOH)
1164.611149.10 $5.69E-01$ $v(NC), v(CO)$ 1170.281151.011.40E-01 $\delta(HCCH), v(CO)$ 1174.631163.63 $6.27E-02$ $\delta(HCCH), p(CA)$ 1179.321162.55 $8.03E-02$ $\delta(HCCH), v(CO), \delta(HCOH)$ 1181.391170.92 $1.14E-01$ $\delta(HCCH), v(CO), \delta(HCOH)$ 1192.111177.14 $7.74E-03$ $\delta(HCCH), p(CA), \delta(HCOH)$ 1208.011188.28 $6.60E-02$ $\delta(HCCH), v(CO)$ 1215.861199.87 $7.98E-02$ $\delta(HCOH), vas(COC)$ in glycosidic linkage1221.571214.91 $2.61E-01$ $\delta(HCOH), \delta(HCCH)$ 123.911218.92 $4.12E-02$ $\delta(HCOH), \delta(HCCH)$ 1241.621224.50 $6.54E-01$ $\delta(HCOH), \delta(HCCH), \beta(CH2)$ 1255.871252.07 $5.24E-02$ $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1258.771240.61 $9.64E-02$ $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1263.251251.27 $1.52E-01$ $\delta(HCOH), \delta(HCCH), \delta(HCCH)$ 1269.301241.72 $3.41E-02$ $\delta(HCOH), \delta(HCCH), \delta(HCCH)$ 1281.941256.03 $1.16E-02$ $\delta(HCOH), \delta(HCCH), \delta(HCCH)$ 1290.751264.67 $1.65E-01$ $\delta(HCOH), \delta(HCCH), \tau(CH2)$ 1295.871267.31 $1.25E-01$ $\delta(HCOH), \beta(HCCH), \tau(CH2)$	1163.36	1148.81	3.93E-01	vas(COC), δ(HCOH), v(CO)
1170.281151.011.40E-01 δ (HCCH), v(CO)1174.631163.636.27E-02 δ (HCOH), β (CH3)1179.321162.558.03E-02 δ (HCCH), v(CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), v(CO), δ (HCOH)1192.111177.147.74E-03 δ (HCCH), v(CO)1208.011188.286.60E-02 δ (HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH)1255.871252.075.24E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1290.751264.671.65E-01 δ (HCOH), δ (HCCH)1295.871267.311.25E-01 δ (HCOH), δ (HCCH)	1164.61	1149.10	5.69E-01	v(NC), v(CO)
1174.631163.636.27E-02δ(HCOH), β(CH3)1179.321162.558.03E-02δ(HCCH), v(CO), δ(HCOH)1181.391170.921.14E-01δ(HCCH), v(CO), δ(HCOH)1192.111177.147.74E-03δ(HCCH), ø(CO), δ(HCOH)1208.011188.286.60E-02δ(HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01δ(HCOH), δ(HCCH)1223.911218.924.12E-02δ(HCOH), δ(HCCH)1241.621224.506.54E-01δ(HCOH), δ(HCCH), β(CH2)125.871252.075.24E-02δ(HCOH), δ(HCCH), β(CH2)1263.251251.271.52E-01δ(HCOH), δ(HCCH)1263.251241.723.41E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH)1295.871267.311.22E-01δ(HCOH), δ(HCCH)	1170.28	1151.01	1.40E-01	δ(HCCH), v(CO)
1179.321162.558.03E-02 δ (HCCH), v(CO), δ (HCOH)1181.391170.921.14E-01 δ (HCCH), v(CO), δ (HCOH)1192.111177.147.74E-03 δ (HCCH), β (CH3), δ (HCOH)1208.011188.286.60E-02 δ (HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1290.751264.671.65E-01 δ (HCOH), δ (HCCH)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1174.63	1163.63	6.27E-02	δ(HCOH), β(CH3)
1181.391170.921.14E-01 δ (HCCH), v(CO), δ (HCOH)1192.111177.147.74E-03 δ (HCCH), β (CH3), δ (HCOH)1208.011188.286.60E-02 δ (HCOH), v(CO)1215.861199.877.98E-02 δ (HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH), β (CH2)1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH3)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH), τ (CH2)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH), τ (CH2)	1179.32	1162.55	8.03E-02	δ(HCCH), ν(CO), δ(HCOH)
1192.111177.147.74E-03 δ (HCCH), β (CH3), δ (HCOH)1208.011188.286.60E-02 δ (HCOH), vas(COC) in glycosidic linkage1215.861199.877.98E-02 δ (HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), δ (HCCH), β (HCCH)	1181.39	1170.92	1.14E-01	δ(HCCH), ν(CO), δ(HCOH)
1208.011188.28 $6.60E-02$ $\delta(HCCH), v(CO)$ 1215.861199.877.98E-02 $\delta(HCOH), vas(COC)$ in glycosidic linkage1221.571214.912.61E-01 $\delta(HCOH), \delta(HCCH)$ 1223.911218.92 $4.12E-02$ $\delta(HCOH), \delta(HCCH)$ 1231.651204.487.28E-02 $\delta(HCOH), \delta(HCCH)$ 1241.621224.50 $6.54E-01$ $\delta(HCOH), \delta(HCCH), \beta(CH2)$ 1255.871252.07 $5.24E-02$ $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1258.771240.61 $9.64E-02$ $\delta(HCOH), \delta(HCCH), \beta(CH3)$ 1263.251251.27 $1.52E-01$ $\delta(HCOH), \delta(HCCH)$ 1269.301241.72 $3.41E-02$ $\delta(HCOH), \delta(HCCH)$ 1281.941256.03 $1.16E-02$ $\delta(HCOH), \delta(HCCH), \tau(CH2)$ 1290.751264.67 $1.65E-01$ $\delta(HCOH), \delta(HCCH), \tau(CH2)$ 1295.871267.31 $1.25E-01$ $\delta(HCOH), \beta(HCCH), \tau(CH2)$	1192.11	1177.14	7.74E-03	δ(HCCH), β(CH3), δ(HCOH)
1215.861199.877.98E-02 δ (HCOH), vas(COC) in glycosidic linkage1221.571214.912.61E-01 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH), τ (CH2)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1208.01	1188.28	6.60E-02	δ(HCCH), v(CO)
1221.571214.912.61E-01 δ (HCOH), δ (HCCH)1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH), τ (CH2)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1215.86	1199.87	7.98E-02	δ(HCOH), vas(COC) in glycosidic linkage
1223.911218.924.12E-02 δ (HCOH), δ (HCCH)1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH), τ (CH2)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), π (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1221.57	1214.91	2.61E-01	δ(HCOH), δ(HCCH)
1231.651204.487.28E-02 δ (HCOH), δ (HCCH)1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1223.91	1218.92	4.12E-02	δ(ΗСΟΗ), δ(НССΗ)
1241.621224.506.54E-01 δ (HCOH), δ (HCCH), β (CH2)1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1231.65	1204.48	7.28E-02	δ(ΗСΟΗ), δ(НССΗ)
1255.871252.075.24E-02 δ (HCOH), δ (HCCH), β (CH3)1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH), τ (CH2)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1241.62	1224.50	6.54E-01	δ(HCOH), δ(HCCH), β(CH2)
1258.771240.619.64E-02 δ (HCOH), δ (HCCH)1263.251251.271.52E-01 δ (HCOH), δ (HCCH)1269.301241.723.41E-02 δ (HCOH), δ (HCCH)1281.941256.031.16E-02 δ (HCOH), δ (HCCH)1290.751264.671.65E-01 δ (HCOH), δ (HCCH), τ (CH2)1295.871267.311.25E-01 δ (HCOH), β (HCCH)	1255.87	1252.07	5.24E-02	δ(HCOH), δ(HCCH), β(CH3)
1263.251251.271.52E-01δ(HCOH), δ(HCCH)1269.301241.723.41E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH), τ(CH2)1295.871267.311.25E-01δ(HCOH), β(HCCH)	1258.77	1240.61	9.64E-02	δ(ΗСΟΗ), δ(НССΗ)
1269.301241.723.41E-02δ(HCOH), δ(HCCH)1281.941256.031.16E-02δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH), τ(CH2)1295.871267.311.25E-01δ(HCOH), β(HCCH)	1263.25	1251.27	1.52E-01	δ(ΗСΟΗ), δ(НССΗ)
1281.941256.031.16E-02δ(HCOH), δ(HCCH)1290.751264.671.65E-01δ(HCOH), δ(HCCH), τ(CH2)1295.871267.311.25E-01δ(HCOH), β(HCCH)	1269.30	1241.72	3.41E-02	δ(HCOH), δ(HCCH)
1290.751264.671.65E-01δ(HCOH), δ(HCCH), τ(CH2)1295.871267.311.25E-01δ(HCOH), β(HCCH)	1281.94	1256.03	1.16E-02	δ(HCOH), δ(HCCH)
1295.87 1267.31 1.25E-01 δ(HCOH), β(HCCH)	1290.75	1264.67	1.65E-01	δ(HCOH), δ(HCCH), τ(CH2)
	1295.87	1267.31	1.25E-01	δ(ΗСΟΗ), β(ΗССΗ)

С	-3.457437	1.818169	-0.806872
Н	-2.945627	2.451034	-1.539870
0	-4.781088	1.612472	-1.101698
Н	-5.198382	2.456838	-1.298909
С	-2.068572	2.903283	0.867448
Ĥ	-1 992249	2 687992	1 937396
0	-3.388699	2 484435	0 463582
ĉ	-2 7/65/7	0 /70036	-0 709061
ц	-2 673260	0.475350	-1 718318
N	-2.07.5200	0.070373	0.054190
	-3.400493	-0.037700	0.004100
	-3.317357	-1.509253	-0.254693
	-4.221031	-0.436552	1.129462
0	-4.467154	0.656196	1.759005
C	-4.842358	-1.651440	1.715005
Н	-4.752681	-2.516439	1.061782
Н	-5.893744	-1.434340	1.913202
Н	-4.367626	-1.858004	2.678749
С	-1.297689	0.679863	-0.186604
Н	-1.163111	0.073105	0.715676
0	0.135054	2.197081	1.038527
Н	0.973339	2.013848	0.576609
С	-0.951116	2.131268	0.159385
Н	-0.723003	2.633087	-0.789891
0	-0.353298	0.328891	-1.187205
Č	-1.942018	4.393544	0.653838
Ĥ	-0.961611	4 709895	1 030645
н	-2 726946	4 902305	1 225539
0	-2 079680	4 634228	-0 733979
н	-2 031651	5 577206	-0.900706
$\hat{\mathbf{C}}$	0.011103	-1 011/68	-1 280610
С Ц	0.520/22	1 090009	2 240002
$\hat{\mathbf{C}}$	0.000700	-1.009090	-2.249992
	-0.962709	-3.102304	-1.415200
	-0.488078	-3.419421	-2.370066
0	-1.166572	-1.779548	-1.303137
C	0.945315	-1.459627	-0.170392
Н	0.501505	-1.214274	0.801734
0	2.187854	-0.812924	-0.329295
С	1.201370	-2.959641	-0.220027
Н	1.790463	-3.173741	-1.125302
0	1.862515	-3.400401	0.933603
Н	2.672879	-2.875485	1.071289
С	-0.106214	-3.728870	-0.297489
Н	0.114273	-4.782708	-0.515248
0	-0.797793	-3.627283	0.937873
Н	-0.148921	-3.802477	1.631745
С	-2.378974	-3.781413	-1.433887
Н	-2.309316	-4.874884	-1.469819
Н	-2.912719	-3.444872	-2.324729
0	-3 137951	-3 356229	-0.314820
н	-2 600913	-3 574600	0 464535
C	2 642355	0.037286	0.684469
й	1 986419	-0.021738	1 558697
$\hat{\mathbf{C}}$	3 436501	1 685033	-0.850083
С Ц	2 001512	1.000905	1 706970
	3.091313	1.060051	-1.700070
C	2.011242	1.3/0002	0.274938
	4.003940	-0.33/303	1.04/30/
П	4.384160		
0	4.063/53	-1./12813	1.447903
Н	4.983107	-2.004701	1.461059
C	4.988448	-0.138819	-0.140895
н	4.670076	-0.795871	-0.955347

6.301035	-0.516335	0.195998	
6.687308	0.223813	0.680544	
4.895939	1.310645	-0.596343	
5.452563	1.421964	-1.536679	
5.499684	2.073084	0.432969	
5.767298	2.929932	0.096071	
3.236065	3.152622	-1.154745	
3.505068	3.759562	-0.286645	
2.191544	3.354059	-1.402657	
3.846968	3.456096	-2.009274	
-4.056727	1. 478527	1.319589	
	6.301035 6.687308 4.895939 5.452563 5.499684 5.767298 3.236065 3.505068 2.191544 3.846968 -4.056727	6.301035-0.5163356.6873080.2238134.8959391.3106455.4525631.4219645.4996842.0730845.7672982.9299323.2360653.1526223.5050683.7595622.1915443.3540593.8469683.456096-4.0567271.478527	6.301035-0.5163350.1959986.6873080.2238130.6805444.8959391.310645-0.5963435.4525631.421964-1.5366795.4996842.0730840.4329695.7672982.9299320.0960713.2360653.152622-1.1547453.5050683.759562-0.2866452.1915443.354059-1.4026573.8469683.456096-2.009274-4.0567271.4785271.319589

Table S23: XYZ-coordinates of [*α-BG-H1+H]*⁺ ion (²A).

С	-3.777383	2.184448	0.678761
Н	-4.837487	1.967781	0.510793
0	-3.561533	2.690759	1.968323
Н	-4.153937	3.431775	2.124078
С	-2.043010	3.469502	-0.345746
Н	-1.800612	4.008710	0.577960
0	-3.416405	3.065247	-0.333744
С	-2.947614	0.903243	0.588832
Н	-3.196736	0.376525	-0.330819
Ν	-3.237802	0.012458	1.701159
Н	-2.991446	0.355264	2.620652
С	-3.610311	-1.236416	1.583034
0	-4.053682	-1.636142	0.454589
С	-3.516724	-2.159892	2.742194
Н	-4.451573	-2.711529	2.856459
Н	-3.274157	-1.640904	3.669271
Н	-2.719836	-2.882372	2.533408
С	-1.458714	1.259384	0.629029
Н	-1.242660	1.734784	1.592161
0	0.197445	2.733553	-0.321664
Н	0.789299	2.058023	0.044803
С	-1.115485	2.260067	-0.456762
Н	-1.275752	1.818370	-1.451599
0	-0.616453	0.113737	0.639845
С	-1.890909	4.398783	-1.533806
Н	-0.847673	4.712464	-1.598446
Н	-2.511152	5.289013	-1.372419
0	-2.210199	3.758028	-2.745990
Н	-3.157224	3.599123	-2.752721
С	-0.428593	-0.642717	-0.513287
Н	-0.287103	-0.009289	-1.401568
С	-1.422709	-2.449363	-1.701765
Н	-1.217301	-1.976504	-2.675319
0	-1.560524	-1.466023	-0.690366
С	0.830160	-1.453657	-0.248894
Н	0.754987	-1.844145	0.773143
0	1.960149	-0.625993	-0.392817
С	1.019342	-2.624943	-1.195009
Н	1.340448	-2.230933	-2.171250
0	1.960753	-3.529828	-0.680783
Н	2.646911	-3.035759	-0.195423
С	-0.275490	-3.397453	-1.390499
Н	-0.150505	-4.091921	-2.232271
0	-0.600005	-4.122397	-0.213972
Н	0.223288	-4.522924	0.098084
С	-2.757680	-3.165527	-1.811586
Н	-2.685524	-3.979090	-2.538658
Н	-3.534230	-2.473752	-2.140902

0	-3.192730	-3.690829	-0.551189
Н	-2.416983	-4.129116	-0.150126
С	2.503998	-0.061404	0.780398
Н	1.839252	-0.255283	1.625890
С	3.492884	1.825427	-0.328880
Н	3.146903	1.492905	-1.317012
0	2.571607	1.325426	0.659631
С	3.876484	-0.670403	1.021190
Н	4.239247	-0.307081	1.990230
0	3.735671	-2.081320	1.047637
Н	4.630982	-2.441044	1.068971
С	4.853839	-0.251613	-0.063576
Н	4.506506	-0.649641	-1.021659
0	6.115748	-0.824900	0.183860
Н	6.556928	-0.255491	0.826339
С	4.901265	1.264174	-0.135148
Н	5.504303	1.562051	-1.003788
0	5.523487	1.679585	1.067286
Н	5.810770	2.591341	0.990634
С	3.444018	3.332726	-0.244094
Н	2.440521	3.699284	-0.463821
Н	4.133489	3.772068	-0.970632
Н	3.717906	3.667280	0.759911
Н	-3.756068	-2.604596	0.166031

Table S24: XYZ-coordinates of $[\beta$ -BG-H1+H]⁺ ion (A').

С	3.513637	1.805175	0.811557
Н	4.593648	1.671357	0.962299
0	2.927519	2.512694	1.828957
Н	2.888813	3.455741	1.587051
С	2.114278	2.822479	-0.925238
Н	2.083009	2.521116	-1.977596
0	3.435884	2.480588	-0.445098
С	2.791494	0.464931	0.721455
Н	2.715409	0.081556	1.737960
Ν	3.533776	-0.558232	-0.028593
Н	3.346609	-1.533697	0.260990
С	4.295036	-0.453930	-1.088540
0	4.571802	0.648811	-1.695431
С	4.914065	-1.665347	-1.682239
Н	5.964842	-1.450725	-1.885936
Н	4.433679	-1.865010	-2.645007
Н	4.821873	-2.534153	-1.034248
С	1.344587	0.645129	0.186093
Н	1.227825	0.019578	-0.706720
0	-0.072844	2.088735	-1.133195
Н	-0.922513	1.941270	-0.680619
С	0.983884	2.079846	-0.211142
Н	0.717027	2.609121	0.708161
0	0.389899	0.299599	1.175722
С	1.963841	4.325674	-0.861157
Н	0.984575	4.588947	-1.275713
Н	2.750673	4.787186	-1.467407
0	2.073118	4.724692	0.496864
Н	2.088767	5.682102	0.556189
С	0.031993	-1.039982	1.281288
Н	-0.496061	-1.119457	2.241572
С	1.032577	-3.208070	1.414410
Н	0.540712	-3.442540	2.371131

0	1.212494	-1.805461	1.295655
С	-0.897074	-1.496280	0.160709
Н	-0.451004	-1.253768	-0.810959
0	-2.141406	-0.848394	0.313550
С	-1.152383	-2.995877	0.219318
Н	-1.739698	-3.205405	1.126579
0	-1.815232	-3.444476	-0.930761
Н	-2.645637	-2.948225	-1.047477
С	0.156499	-3.762309	0.299948
Н	-0.061654	-4.815452	0.522704
0	0.848567	-3.665494	-0.936175
Н	0.204125	-3.855709	-1.629920
С	2.431261	-3.801027	1.432175
Н	2.368717	-4.894751	1.465968
Н	2.964500	-3.462371	2.322405
0	3.186024	-3.369571	0.311188
Н	2.649275	-3.594612	-0.466794
С	-2.610359	-0.034890	-0.716314
Н	-1.973088	-0.123735	-1.601844
С	-3.334647	1.640875	0.833824
Н	-2.989939	0.984205	1.640149
0	-2.570523	1.327299	-0.352355
С	-4.044652	-0.426601	-1.035021
Н	-4.362322	0.170777	-1.901245
0	-4.074800	-1.796976	-1.372256
Н	-4.999623	-2.071370	-1.372303
С	-4.959329	-0.121490	0.143045
Н	-4.677384	-0.772180	0.977105
0	-6.286591	-0.442506	-0.195272
Н	-6.655721	0.324905	-0.650453
С	-4.803220	1.338086	0.564189
Н	-5.378440	1.505187	1.479888
0	-5.373857	2.187629	-0.414126
Н	-4.723935	2.340383	-1.107235
С	-3.050814	3.081219	1.180465
Н	-3.350052	3.751298	0.371859
Н	-1.986267	3.220586	1.382543
Н	-3.607666	3.362998	2.076954
Н	4.136005	1.469444	-1.280975

Table S25: XYZ-coordinates of $[\beta$ -BG-H1+H]⁺ ion (²A').

3.010512	-2.399101	-0.483986
2.447526	-3.149361	-1.044940
3.794867	-3.132753	0.442875
4.447819	-2.499979	0.817963
4.216580	-0.398833	-1.124573
4.468884	0.016046	-2.102521
3.756629	-1.717783	-1.420717
2.033442	-1.489945	0.296811
2.515847	-1.192598	1.237298
0.815041	-2.212444	0.636762
-0.095592	-1.869644	0.267944
0.769454	-3.255781	1.425105
1.824159	-3.820324	1.907318
-0.527855	-3.844932	1.831181
-1.371904	-3.375179	1.328734
-0.627729	-3.734112	2.915279
-0.509979	-4.916505	1.620390
1.771105	-0.215973	-0.489905
1.418883	-0.436997	-1.506919
3.090601	1.657019	-1.356832
	3.010512 2.447526 3.794867 4.447819 4.216580 4.468884 3.756629 2.033442 2.515847 0.815041 -0.095592 0.769454 1.824159 -0.527855 -1.371904 -0.627729 -0.509979 1.771105 1.418883 3.090601	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	2.507546	2.298815	-0.920468
С	3.117523	0.513361	-0.548405
Н	3.362112	0.781256	0.490259
0	0.780321	0.514686	0.214400
С	5.486681	-0.406643	-0.303295
Н	5.846023	0.624244	-0.215873
Н	6.243827	-1.012203	-0.811345
0	5.205507	-0.946470	0.991277
Н	5.975818	-0.850953	1.557200
С	0.195960	1.607801	-0.419881
Н	0.189996	1.460717	-1.512355
С	0.402776	3.984675	-0.596631
Н	0.310601	3.929367	-1.693602
0	0.960643	2.762240	-0.103973
C	-1.223931	1.751351	0.104412
Ĥ	-1.180881	1.737828	1.199594
0	-2.031115	0.706526	-0.387422
Č	-1.889091	3.047524	-0.341155
Ĥ	-2.067530	2.997527	-1.420793
0	-3.148413	3.168600	0.276304
Ĥ	-3.000862	3.598765	1.129342
C	-0.990075	4 228799	-0.020027
Ĥ	-1 397214	5 132536	-0 497637
0	-1 018879	4 345635	1 382549
н	-0 292118	4 921828	1 659034
C	1 397418	5 082810	-0 265296
Ĥ	1 037252	6 025656	-0.683291
н	2 364572	4 860107	-0 732102
0	1 538500	5 286102	1 127747
н	2 021972	4 542602	1 497625
C	-2 220508	-0 410691	0 433059
н	-1 683313	-0.280632	1.377567
C	-2 296800	-1 966194	-1 406406
н	-2 228425	-1 129888	-2 111903
0	-1 665459	-1 552567	-0 173271
č	-3 711077	-0.583707	0.693630
н	-3 829982	-1 373158	1 441523
0	-4 267624	0 580088	1 244278
н	-4 006722	1 348647	0 709716
C	-4 437899	-1 024597	-0 568565
н	-4 401879	-0 212402	-1 310145
0	-5 769063	-1 378378	-0 278590
н	-6 143980	-0.691024	0.282087
C	-3 765529	-2 256899	-1 157486
н	-4 235488	-2 486503	-2 125177
0	-3 865777	-3 355400	-0 281329
н	-4 792348	-3 417961	-0.023164
C	-1 528715	-3 157327	-1 925423
й	-1 599704	-3 994429	-1 228562
н	-0 478622	-2 902741	-2 002002
н	-1 950098	-3 478988	-2 880231
Н	2.691397	-3.555542	1.449153
· -			

Table S26: XYZ-coordinates of [*α-Le*^a+*H*]⁺ ion (B).

С	-1.074992	3.127270	-0.746336
Н	-0.410356	3.172352	-1.616077
0	-2.091064	4.044844	-0.803183
Н	-1.731723	4.908226	-1.031189
С	0.890916	2.595853	0.593936

Н	0.900325	2.298402	1.648730
0	-0.287884	3.414148	0.420040
C	-1.668333	1.730386	-0.620870
Н	-2.095387	1.472290	-1.589045
Ν	-2.787917	1.648809	0.323013
Н	-3.532570	0.980933	0.062080
C	-2.961876	2.220236	1.487885
Õ	-2 127660	3 019449	2 051402
č	-4 194874	1 944951	2 268108
Ĥ	-4 565317	2 889717	2 669176
н	-3 936578	1.308501	3 119986
н	-4 962294	1.000001	1 665734
C	-0 551962	0.686620	-0 322719
н	-0 757070	0.000020	0.638750
$\overline{0}$	-0 1/703/	-0.26231	-1 365738
ĉ	0.828/70	1 337763	-0.267802
ц	1 10/018	1.001065	-1.207002
\sim	1.104010	0.469079	0.275449
Ĉ	2 124042	2 420242	0.275440
	2.124043	2.430343	0.290203
	2.004093	2.910207	0.002013
	2.020020	4.304413	1.095024
U U	2.240024	3.00/4/9	-1.063024
	2.843197	3.015963	-1.440549
	-1.342727	-1.343378	-1.376940
	-1.215771	-1.797013	-2.369576
	-3.692326	-1.764233	-1.278982
Н	-3.703386	-2.253395	-2.265254
0	-2.638140	-0.815249	-1.226214
C	-1.049300	-2.394610	-0.308484
Н	-1.057997	-1.919014	0.682874
0	0.150485	-3.074191	-0.551449
Н	0.924190	-2.511034	-0.374254
C	-2.134929	-3.460266	-0.335625
Н	-2.055462	-3.996042	-1.293765
0	-1.995193	-4.352154	0.743512
Н	-1.089997	-4.679761	0.736388
C	-3.520554	-2.854577	-0.230718
Н	-4.266778	-3.637295	-0.422288
0	-3./22/28	-2.305606	1.063468
Н	-3.457350	-2.979181	1.701078
C	-4.9//15/	-0.969658	-1.121318
н	-5.834062	-1.653157	-1.114309
Н	-5.094011	-0.286364	-1.964502
0	-4.951481	-0.174596	0.052536
Н	-4.762954	-0.790100	0.779713
С	2.486143	-0.363035	-0.632245
Н	1.951089	-0.402983	-1.582713
С	3.152505	-1.826696	1.149653
Н	2.685390	-1.129322	1.854142
0	2.491476	-1.673774	-0.131294
С	3.923234	0.093917	-0.832468
Н	4.358921	-0.580262	-1.584055
0	3.951858	1.417383	-1.327227
Н	4.878111	1.689901	-1.300581
С	4.724233	-0.023553	0.454495
Н	4.316577	0.680608	1.187652
0	6.055450	0.361929	0.212335
Н	6.523721	-0.421859	-0.102933
С	4.618868	-1.442686	1.004558
Н	5.094151	-1.478495	1.989667
0	5.353256	-2.332801	0.186291
Н	4.798004	-2.616099	-0.546810
С	2.932485	-3.249583	1.600109

Н	3.366313	-3.961023	0.894632
Н	1.865825	-3.460900	1.696232
Н	3.406301	-3.404767	2.571970
Н	-1.322837	3.245606	1.469265

Table S27: XYZ-coordinates of [*α-Le^a+H]*⁺ ion (²B).

С	-1.114720	3.450734	-0.222555
Н	-1.927766	4.039568	-0.656353
0	-0.783504	3.962273	1.068269
Н	-0.617626	4.910124	1.018698
С	1.130197	2.850995	-0.680074
Н	1.451747	3.244255	0.291762
0	-0.054060	3.549639	-1.092627
С	-1.537398	1.987871	-0.072195
Н	-1.815342	1.688232	-1.081917
Ν	-2.747042	1.734228	0.719188
Н	-3.403068	1.065738	0.287309
С	-2.987373	1.985393	1.979515
0	-2.238363	2.724275	2.725162
С	-4.175914	1.394208	2.636893
Н	-4.628771	2.134446	3.297281
Н	-3.841408	0.555549	3.256511
Н	-4.898043	1.036076	1.905095
С	-0.352562	1.111311	0.373719
Н	-0.050020	1.386911	1.389096
0	-0.696278	-0.255564	0.497321
C	0.839365	1.361700	-0.542645
Н	0.644077	0.978449	-1.551569
0	2.015899	0.785793	-0.019206
C	2.226595	3.116032	-1.705612
н	3.190978	3.001513	-1.202170
Н	2.129787	4.156794	-2.030588
U U	2.143709	2.273878	-2.824052
	2.030003	1.000120	-2.7 19140
	-1.190099	-0.901430	-0.005247
	-0.042900	-0.044101	-1.400721
	-3.301213	-1.200100	-1.003393
\cap	-3.052129	-0.443086	-2.712207
C	-2.407019	-0.445000	-0.000200
н	-1 608132	-2 433998	0.858653
0	0.053207	-3 008185	-0 247427
н	0.699805	-2 497247	0.247427
C	-2 133184	-3 255294	-1 043183
Ĥ	-1.691752	-3.324788	-2.049235
0	-2.316334	-4.536198	-0.490467
Ĥ	-1.448441	-4.901235	-0.289814
С	-3.507908	-2.624927	-1.156589
Н	-4.100427	-3.196835	-1.883509
0	-4.166040	-2.610146	0.098787
Н	-4.104746	-3.498929	0.467554
С	-4.684200	-0.411190	-1.578215
Н	-5.503893	-1.000328	-2.004682
Н	-4.597870	0.512864	-2.154217
0	-4.960567	-0.032883	-0.240843
Н	-4.977325	-0.862013	0.262048
С	2.388217	-0.488435	-0.461653
Н	1.772131	-0.796823	-1.311986
С	2.903954	-1.211179	1.762230
Н	2.641033	-0.204909	2.107614
0	2.186306	-1.462129	0.535431
С	3.860514	-0.487672	-0.843534

Н	4.081659	-1.491640	-1.234106
0	4.091493	0.468232	-1.852613
Н	5.047932	0.560189	-1.939685
С	4.733131	-0.230906	0.376961
Н	4.537161	0.783919	0.738282
0	6.088516	-0.277960	0.002572
Н	6.360642	-1.203675	0.045192
С	4.400640	-1.237309	1.476772
Н	4.944527	-0.962724	2.385718
0	4.875221	-2.520733	1.114811
Н	4.223093	-2.945382	0.548627
С	2.445546	-2.241001	2.764672
Н	2.675832	-3.253909	2.427629
Н	1.368410	-2.158591	2.925699
Н	2.950921	-2.081375	3.719814
Н	-1.562151	3.238603	2.194067

Table S28: XYZ-coordinates of $[\beta-Le^a+H]^+$ ion (B').

С	1.511538	-2.713679	1.043008
Н	2.469286	-2.680219	1.567766
0	1.392392	-4.041874	0.571502
Н	0.461648	-4.193139	0.287077
С	-0.727029	-1.975791	1.557801
Н	-1.108977	-1.349878	2.368693
0	0.583200	-2.342320	1.987778
С	1.569141	-1.753647	-0.181634
Н	1.142295	-2.273888	-1.048342
Ν	2.956888	-1.464257	-0.498481
Н	3.276289	-0.488704	-0.441503
С	3.797321	-2.387736	-0.879119
0	3.478263	-3.639224	-0.941606
С	5.173554	-2.034970	-1.293844
Н	5.849010	-2.850247	-1.036023
Н	5.488979	-1.107598	-0.815473
Н	5.191054	-1.912782	-2.381828
С	0.697653	-0.524753	0.052314
Н	1.050126	0.040889	0.919808
0	0.622098	0.284856	-1.107915
С	-0.694366	-1.114386	0.291313
Н	-0.908422	-1.734140	-0.585810
0	-1.696856	-0.137330	0.413688
С	-1.620721	-3.196129	1.421849
Н	-2.666275	-2.883403	1.385358
Н	-1.473336	-3.840213	2.290868
0	-1.297464	-3.958342	0.265325
Н	-1.839512	-3.622426	-0.460038
С	1.262179	1.529216	-1.067749
Н	1.107492	1.956546	-2.066244
С	3.488123	2.371836	-0.645709
Н	3.493885	3.013928	-1.539147
0	2.630703	1.258932	-0.851579
С	0.667233	2.482253	-0.022387
Н	0.520366	1.941846	0.921120
0	-0.533740	3.049919	-0.472962
Н	-1.251568	2.395772	-0.525624
С	1.589349	3.657362	0.265713
Н	1.589038	4.314876	-0.616740
0	1.158796	4.359513	1.407194
Н	0.235049	4.595077	1.277243

С	3.011852	3.208421	0.525669
Н	3.653245	4.096518	0.606074
0	3.104042	2.427960	1.705476
Н	2.696837	2.932827	2.418220
С	4.880867	1.790073	-0.456051
Н	5.566155	2.584576	-0.136776
Н	5.244362	1.399430	-1.410018
0	4.877792	0.705762	0.448441
Н	4.510350	1.034551	1.280674
С	-2.416981	0.132324	-0.782239
Н	-1.745855	0.038847	-1.639217
С	-3.762607	1.809264	0.285686
Н	-3.294700	1.614126	1.259520
0	-2.814136	1.464738	-0.743916
С	-3.636226	-0.762411	-0.947161
Н	-4.101805	-0.474619	-1.898166
0	-3.256856	-2.129893	-0.991712
Н	-4.089287	-2.619773	-0.962628
С	-4.631997	-0.528374	0.176992
Н	-4.164563	-0.796939	1.129232
0	-5.741007	-1.379002	0.010059
Н	-6.337705	-0.938811	-0.608727
С	-5.018525	0.941900	0.206386
Н	-5.621203	1.135634	1.104159
0	-5.786255	1.150442	-0.963546
Н	-6.287478	1.965006	-0.891137
С	-4.041954	3.284369	0.128452
Н	-3.121739	3.861244	0.236542
Н	-4.747540	3.620617	0.893071
Н	-4.455023	3.492962	-0.861493
Н	2.613118	-3.902635	-0.496648

Table S29: XYZ-coordinates of $[\beta-Le^a+H]^+$ ion (²B').

С	1.771711	2.633160	-1.033260
Н	2.464078	2.236970	-1.780202
0	2.271543	3.918915	-0.702820
Н	1.590623	4.345132	-0.137132
С	-0.645208	2.653325	-0.846032
Н	-1.443165	2.417320	-1.555789
0	0.537491	2.657466	-1.650385
С	1.797378	1.739781	0.228280
Н	1.617039	2.366020	1.111370
Ν	3.096423	1.096372	0.385825
Н	3.105349	0.067607	0.464359
С	4.224433	1.734681	0.578886
0	4.323078	3.016944	0.508243
С	5.456138	0.989267	0.921293
Н	5.479124	0.833752	2.005223
Н	6.326370	1.580767	0.641305
Н	5.466746	0.017914	0.420550
С	0.664399	0.726276	0.132193
Н	0.723592	0.215066	-0.832841
0	0.679885	-0.186610	1.207558
С	-0.638827	1.509186	0.199790
Н	-0.725027	1.907594	1.219217
0	-1.695357	0.599325	-0.035069
С	-0.942724	4.027262	-0.283241
Н	-1.932154	4.016715	0.184788
Н	-0.949007	4.751718	-1.104096
0	0.052667	4.377728	0.682611
Н	-0.215920	5.170908	1.153494
С	1.033613	-1.510379	0.962273

Н	0.744603	-2.046440	1.875335
С	2.980374	-2.871461	0.671406
Н	2.780707	-3.428607	1.599271
0	2.438900	-1.557486	0.797698
С	0.365268	-2.145242	-0.253698
Н	0.708077	-1.640243	-1.166576
0	-1.031713	-2.130403	-0.157203
Н	-1.321818	-1.201316	-0.165414
С	0.820317	-3.588237	-0.370774
Н	0.495873	-4.141420	0.523979
0	0.312888	-4.185565	-1.537591
Н	-0.630266	-3.998558	-1.584689
С	2.338460	-3.642617	-0.472857
Н	2.660321	-4.690280	-0.396093
0	2.770926	-3.090962	-1.701897
Н	2.244996	-3.498616	-2.400260
С	4.485050	-2.710500	0.520239
Н	4.928999	-3.698192	0.340265
Н	4.899867	-2.327246	1.456317
0	4.832133	-1.788697	-0.484917
Н	4.409102	-2.086258	-1.301892
С	-2.987540	1.058672	0.372600
Н	-2.930988	2.133100	0.566559
С	-3.697041	-0.908437	1.536925
Н	-2.773776	-1.468827	1.344998
0	-3.390902	0.492689	1.565459
С	-3.978844	0.794465	-0.746927
Н	-4.925410	1.256642	-0.435215
0	-3.495789	1.392008	-1.924427
Н	-4.034185	1.057111	-2.650085
С	-4.214984	-0.698757	-0.910354
Н	-3.284375	-1.186575	-1.215307
0	-5.139303	-0.928927	-1.946324
Н	-6.016998	-0.798850	-1.565687
С	-4.681022	-1.270911	0.421842
Н	-4.715817	-2.366291	0.345961
0	-5.983140	-0.746424	0.615594
Н	-6.445433	-1.253135	1.285708
С	-4.210334	-1.254500	2.914499
Н	-5.102565	-0.669140	3.150311
Н	-3.452450	-1.028860	3.666505
Н	-4.448823	-2.320053	2.978174
Н	3.517606	3.489751	0.106064

Table S30: XYZ-coordinates of [*α-a16+H]*⁺ion (C).

С	-3.569188	-2.339486	1.057256
Н	-3.289177	-3.354217	1.357873
0	-3.954976	-1.571382	2.168810
Н	-4.624821	-2.045697	2.669678
С	-5.099456	-1.287671	-0.406576
Н	-5.505219	-0.658616	0.395018
0	-4.585832	-2.502572	0.127331
С	-2.363132	-1.616023	0.446239
Н	-1.875390	-2.270981	-0.276536
Ν	-1.433228	-1.326788	1.522589
Н	-1.854116	-0.898984	2.338657
С	-0.135811	-1.481408	1.525273
0	0.421471	-2.048256	0.523824
С	0.618028	-1.044475	2.730868
Н	0.252755	-1.587071	3.606882
Н	0.448655	0.023513	2.888035

Н	1.680820	-1.240623	2.613883
С	-2.774850	-0.315566	-0.249364
Н	-3.025667	0.430474	0.511440
0	-1.725342	0.120217	-1.089010
Н	-5.309776	0.693795	-1.908316
С	-4.001505	-0.508649	-1.128381
Н	-3.689850	-1.065680	-2.024579
0	-4.448513	0.783639	-1.471944
С	-6.217937	-1.714613	-1.340263
Н	-6.993020	-2.227692	-0.760975
Н	-5.812029	-2.413864	-2.082051
0	-6.723129	-0.542634	-1.958406
Н	-7.420571	-0.770369	-2.576168
С	-0.977736	1.256137	-0.806702
Н	-0.513906	1.512994	-1.769474
С	1.015565	1.946424	0.181434
Н	1.350356	2.171517	-0.844299
0	0.038492	0.923043	0.123059
С	-1.753414	2.463462	-0.285214
Н	-2.187744	2.218546	0.695452
0	-2.717731	2.930439	-1.184225
Н	-3.390700	2.243896	-1.333948
С	-0.784422	3.619766	-0.067946
Н	-0.427442	3.945774	-1.056881
0	-1.418221	4.681688	0.603148
Н	-2.245947	4.863436	0.145792
С	0.416038	3.212930	0.773407
Н	1.160058	4.022099	0.733191
0	0.043148	2.950250	2.108046
Н	-0.527346	3.678587	2.379920
С	2.206059	1.454509	0.966201
Н	1.958350	1.342923	2.027065
Н	3.012038	2.191810	0.881719
0	2.610211	0.209368	0.419312
С	3.852912	-0.230699	0.869626
Н	3.914681	-0.168166	1.964491
С	5.030032	0.612076	-1.029510
Н	4.068961	0.946000	-1.440363
0	4.920012	0.550260	0.404310
С	4.034963	-1.658695	0.384822
Н	4.944942	-2.047830	0.855641
0	2.940023	-2.480079	0.796830
Н	3.096415	-3.342521	0.385469
С	4.188392	-1.724544	-1.125772
Н	3.244655	-1.421315	-1.590760
0	4.423027	-3.064237	-1.494913
Н	5.377972	-3.203996	-1.445680
С	5.302101	-0.784954	-1.575009
Н	5.321379	-0.751962	-2.668819
0	6.552159	-1.311185	-1.170014
Н	6.770651	-0.959656	-0.300947
С	6.106963	1.619246	-1.350026
Н	5.852676	2.590700	-0.922623
Н	6.206674	1.728574	-2.432440
Н	7.074319	1.309033	-0.949606
Н	1.428941	-2.091960	0.604672

Table S31: XYZ-coordinates of [*α-a16+HJ*⁺ ion (²C).

С	0.258211	3.116220	1.102832
Н	-0.310753	3.017939	2.032501
0	1.142197	4.205677	1.162068
Н	0.658257	4.996033	1.419187

С	-0.176369	3.239762	-1.238881
Н	0.495448	4.099684	-1.356662
0	-0.695833	3.228035	0.097347
С	1.128868	1.875346	0.892404
Н	0.475628	1.008464	1.012746
Ν	2.149696	1.864914	1.927157
Н	2.486551	2.781973	2.200330
С	2.663264	0.822104	2.527976
0	2.371363	-0.391461	2.243738
С	3.635487	1.008232	3.632866
Н	4.588534	0.559358	3.341657
Н	3.275714	0.464126	4.509434
Н	3.784242	2.056870	3.886897
С	1.751029	1.884934	-0.508282
Н	2.374922	2.775050	-0.628735
0	2.669454	0.804780	-0.648005
Н	0.444600	1.797910	-3.431059
С	0.610669	1.949628	-1.508171
Н	-0.072124	1.103341	-1.354606
0	1.158285	1.938785	-2.801920
C	-1.349170	3.405403	-2.190124
н	-0.957345	3.720289	-3.162613
Н	-1.980341	4.220190	-1.818224
0	-2.072199	2.216859	-2.382262
Н	-2.813630	2.167721	-1.760061
	2.196795	-0.426897	-1.058013
	1.020308	-0.353417	-1.992756
	0.797404	-2.220539	-0.344091
	0.320710	-2.147040	-1.335906
ĉ	2 20/021	-0.920000	1 200691
С Ц	2 051927	1 21/6/2	-1.200001
\cap	1 206504	-1.014042	-0.203703
ц	4.200304	-0.110200	-2.291219
$\hat{\mathbf{C}}$	2 0/2038	-2 785512	-1 1/1335
н	2 480879	-2 835541	-2 439715
0	4 025966	-3 675023	-1 348626
н	4 723573	-3.367829	-1 935994
C	1 917715	-3 237718	-0 404788
H	1.503755	-4.203664	-0.728576
0	2.487503	-3.335784	0.876055
Ĥ	3.301261	-3.844446	0.786237
С	-0.290250	-2.502631	0.661239
Н	0.105835	-2.477868	1.684110
Н	-0.710039	-3.499661	0.479326
0	-1.240722	-1.485124	0.454706
С	-2.279254	-1.369647	1.377524
Н	-1.915898	-1.536466	2.398308
С	-3.863855	-2.295114	-0.140697
Н	-3.061364	-2.465047	-0.869998
0	-3.294852	-2.317442	1.177226
С	-2.844416	0.034146	1.205828
Н	-3.662268	0.149321	1.930985
0	-1.846769	0.992279	1.455192
Н	-2.073532	1.782556	0.947617
С	-3.397462	0.150171	-0.206295
Н	-2.575101	0.018534	-0.914637
0	-3.903595	1.456920	-0.427042
Н	-4.819817	1.471426	-0.120746
С	-4.455232	-0.920071	-0.443331
Н	-4.763416	-0.891495	-1.493423
0	-5.614337	-0.612903	0.310252
н	-5.526637	-0.998761	1.187446

С	-4.867311	-3.420180	-0.213176
Н	-4.377978	-4.371386	0.002977
Н	-5.305353	-3.470016	-1.212825
Н	-5.676777	-3.278534	0.505820
Н	1.897724	-0.583792	1.362198

Table S32: XYZ-coordinates of $[\beta-a16+H]^+$ ion (C').

С	0.807114	-2.500324	-0.061823
Н	0.443580	-1.919429	-0.917120
0	-0.139500	-3.467625	0.284354
Н	-0.854893	-3.427886	-0.382643
С	2.979025	-2.243746	-0.872034
Н	2.604731	-1.760305	-1.787848
0	2.010122	-3.143747	-0.364718
С	1.074134	-1.573043	1.127998
Н	1.550784	-2.164887	1.919320
Ν	-0.116844	-0.945909	1.685653
Н	-0.193032	0.073773	1.556672
С	-0.985849	-1.542949	2.449949
0	-1.022718	-2.827734	2.579208
С	-1.974784	-0.763840	3.228720
Н	-2.969942	-1.189020	3.087220
Н	-1.964694	0.286885	2.946934
Н	-1.726146	-0.861360	4.290294
С	2.019838	-0.488533	0.627298
Н	1.527173	-0.010665	-0.223659
0	2.281323	0.463509	1.643495
Н	4.803583	-0.563993	-0.939995
С	3.307391	-1.131043	0.140172
Н	3.834823	-1.563769	1.003644
0	4.083019	-0.119971	-0.464253
С	4.187586	-3.098868	-1.206125
Н	3.908708	-3.826775	-1.974757
Н	4.498319	-3.639709	-0.303820
0	5.209088	-2.226189	-1.663188
Н	6.004491	-2.724153	-1.861512
С	1.847894	1.763422	1.393728
Н	2.155008	2.342311	2.272357
С	-0.250461	2.914845	0.967545
Н	-0.077296	3.661193	1.759218
0	0.423533	1.711769	1.306780
С	2.445228	2.374489	0.128477
Н	2.236311	1.715086	-0.722102
0	3.823041	2.569561	0.260904
Н	4.235182	1.702688	0.118751
С	1.801603	3.713131	-0.178020
Н	2.023489	4.424206	0.631505
0	2.254117	4.207652	-1.414943
Н	3.214590	4.127637	-1.427576
С	0.295435	3.542943	-0.302748
Н	-0.168089	4.532260	-0.414243
0	-0.002236	2.754227	-1.445556
Н	0.551788	3.104444	-2.157644
С	-1.752735	2.603038	0.983565
Н	-2.301167	3.389102	0.453190
Н	-2.094180	2.610711	2.022740
0	-2.053520	1.323198	0.470253
С	-2.569390	1.240411	-0.839034
Н	-2.302228	2.136567	-1.403437
С	-4.521991	0.057776	-0.174174
Н	-4.162577	0.069270	0.863652

0	-3.964767	1.185395	-0.858433
С	-1.954429	0.000042	-1.497478
Н	-2.273955	0.002535	-2.549820
0	-0.551091	0.017373	-1.417874
Н	-0.261656	0.943903	-1.483347
С	-2.498829	-1.249425	-0.820615
Н	-2.145154	-1.252920	0.210510
0	-2.007921	-2.443522	-1.408582
Н	-2.547267	-2.630200	-2.187809
С	-4.023313	-1.230417	-0.819929
Н	-4.384503	-2.085255	-0.238154
0	-4.496093	-1.428470	-2.137989
Н	-4.575378	-0.572559	-2.571613
С	-6.023058	0.212645	-0.196010
Н	-6.406221	0.212909	-1.218453
Н	-6.308226	1.152475	0.279424
Н	-6.495674	-0.611525	0.343625
Н	-0.596015	-3.268910	1.774487

Table S33: XYZ-coordinates of $[\alpha - an16+H]^+$ ion (D).

С	-0.159276	3.576135	-0.639307
Н	-0.136687	3.846504	-1.700268
0	-0.677945	4.618463	0.139707
Н	-0.213107	5.433708	-0.069011
С	1.368152	2.765347	1.006666
Н	1.205531	3.581506	1.721566
0	1.153529	3.235108	-0.325486
С	-1.069924	2.374076	-0.413137
Н	-0.721753	1.561152	-1.047024
Ν	-2.449424	2.632908	-0.785296
Н	-2.971822	3.274402	-0.203510
С	-3.104334	1.907661	-1.658686
0	-2.433375	1.176039	-2.461162
С	-4.587545	1.946897	-1.710723
Н	-4.920178	2.096089	-2.739590
Н	-5.007187	2.719596	-1.066897
Н	-4.961588	0.974284	-1.372089
С	-1.003353	1.947317	1.058221
Н	-1.318815	2.776680	1.697799
0	-1.932584	0.913810	1.355133
Н	1.155364	0.484813	2.745360
С	0.438208	1.599151	1.361091
Н	0.734362	0.760771	0.722157
0	0.576198	1.260746	2.712063
С	2.813378	2.316606	1.092573
Н	3.074975	2.173816	2.146183
Н	3.463169	3.086562	0.663775
0	2.941207	1.102782	0.376031
С	-1.628823	-0.398575	1.025533
Н	-0.617352	-0.677125	1.354383
С	-1.572100	-1.866474	-0.855391
Н	-0.568208	-2.249725	-0.613148
0	-1.732128	-0.539190	-0.378103
С	-2.664692	-1.256785	1.731785
Н	-3.655232	-0.869875	1.455158
0	-2.480155	-1.253645	3.124618
Н	-2.515795	-0.344751	3.438012
С	-2.555069	-2.701800	1.283547
Н	-1.595869	-3.105811	1.640873
0	-3.631219	-3.472374	1.762926
Н	-3.713964	-3.322595	2.710137

С	-2.590571	-2.808921	-0.230452
Н	-2.340055	-3.838026	-0.519209
0	-3.884560	-2.477059	-0.720452
Н	-4.529097	-2.957085	-0.185997
С	-1.691555	-1.799116	-2.367476
Н	-1.623360	-2.803218	-2.794753
Н	-0.887728	-1.189625	-2.782718
0	-2.919507	-1.188142	-2.790214
Н	-3.627934	-1.607047	-2.262814
С	3.821606	0.124508	0.844189
Н	4.304074	0.441226	1.774326
С	4.381111	-0.462449	-1.383664
Н	3.709032	0.331464	-1.730468
0	4.852169	-0.114172	-0.073491
С	3.051148	-1.176968	1.045454
Н	3.769474	-1.929125	1.395677
0	2.044391	-1.004917	2.028217
Н	1.604091	-1.854932	2.130865
С	2.457947	-1.620421	-0.282595
Н	1.740376	-0.862091	-0.612381
0	1.736301	-2.827828	-0.120745
Н	2.382995	-3.541764	-0.205510
С	3.571007	-1.755389	-1.319244
Н	3.126342	-1.946753	-2.301694
0	4.346051	-2.900845	-1.010184
Н	5.077331	-2.635685	-0.443183
С	5.588178	-0.542575	-2.286392
Н	5.280814	-0.783653	-3.306829
Н	6.288945	-1.310723	-1.952032
Н	6.108295	0.416466	-2.294223
Н	-2.801401	0.200634	-2.658657

Table S34: XYZ-coordinates of [α - an16+H]⁺ ion (²D).

С	-0.563560	-2.669783	-0.970535
Н	-0.438314	-3.735053	-0.750866
0	-1.513128	-2.469430	-1.982075
Н	-1.303596	-3.034037	-2.731903
С	0.781081	-0.803413	-1.540047
Н	0.076975	-0.543656	-2.340689
0	0.705891	-2.211069	-1.293395
С	-1.109910	-1.937427	0.261091
Н	-0.487571	-2.228245	1.114074
Ν	-2.467382	-2.391603	0.521225
Н	-3.064849	-2.564037	-0.286881
С	-3.034715	-2.361037	1.694737
0	-2.447714	-1.819405	2.715271
С	-4.335018	-3.016560	1.934170
Н	-4.827093	-3.278215	0.998213
Н	-4.965629	-2.363708	2.538127
Н	-4.154352	-3.928459	2.513653
С	-1.031851	-0.426093	0.078181
Н	-1.708269	-0.145170	-0.732089
0	-1.449938	0.197637	1.297395
Н	1.425263	1.586771	-0.127244
С	0.399157	-0.050807	-0.260359
Н	1.056729	-0.398832	0.545172
0	0.522983	1.338280	-0.420509
С	2.178322	-0.464337	-2.011092
Н	2.131458	0.459794	-2.598076
Н	2.550027	-1.269237	-2.654728
0	3.009920	-0.274422	-0.887220

С	-2.575658	1.057386	1.173733
Н	-2.694519	1.499333	2.170757
С	-4.864134	0.748483	0.371818
Н	-5.419465	1.205430	1.204798
0	-3.641451	0.204468	0.849918
С	-2.354484	2.163032	0.146748
Н	-2.002295	1.725281	-0.791892
0	-1.431024	3.105663	0.611360
Н	-0.560054	2.734907	0.404207
С	-3.661881	2.858552	-0.177383
Н	-4.063705	3.345805	0.724326
0	-3.478099	3.792272	-1.211409
Н	-2.710699	4.329705	-0.986661
С	-4.658981	1.826729	-0.676366
Н	-5.625614	2.318281	-0.849394
0	-4.200890	1.222726	-1.874765
Н	-3.987394	1.934143	-2.489498
С	-5.666685	-0.442996	-0.146625
Н	-6.561157	-0.067387	-0.659433
Н	-6.005936	-1.045224	0.698477
0	-4.914086	-1.299812	-0.977597
Н	-4.597605	-0.759720	-1.713935
С	4.078080	0.615584	-1.041434
Н	3.891484	1.289012	-1.885477
С	5.689722	-0.978455	-0.328713
Н	4.873001	-1.695676	-0.180948
0	5.283493	-0.030789	-1.331099
С	4.214078	1.402646	0.252770
Н	4.984867	2.167036	0.089852
0	2.984571	2.043152	0.551509
Н	3.059917	2.379450	1.453003
С	4.649357	0.495267	1.391376
Н	3.849287	-0.224807	1.592325
0	4.817094	1.259467	2.563431
Н	5.713767	1.617708	2.534089
С	5.917916	-0.254490	0.994373
Н	6.156892	-0.987028	1.771812
0	7.006958	0.650299	0.956321
Н	7.065878	1.022600	0.070614
С	6.911008	-1.690099	-0.857179
Н	7.737020	-0.994688	-1.020377
Н	6.678033	-2.178959	-1.804584
Н	7.241366	-2.448213	-0.143134
Н	-1.849900	-1.089079	2.403051

Table S35: XYZ-coordinates of $[\beta$ -an16+H]⁺ ion (D').

С	-1.027909	2.781461	0.641427
Н	-1.193876	2.354830	1.644697
0	-1.488983	4.099216	0.584514
Н	-0.931338	4.678858	1.114312
С	0.960108	1.537510	0.409169
Н	0.869808	1.130507	1.428043
0	0.324634	2.807506	0.334846
С	-1.777248	1.979622	-0.422213
Н	-1.583584	2.457670	-1.390336
Ν	-3.221990	1.916385	-0.199936
Н	-3.621001	0.970477	-0.085204
С	-4.081266	2.877157	-0.425387
0	-3.727350	4.097888	-0.653813
С	-5.532340	2.592690	-0.452599
Н	-5.789485	2.169947	-1.429421

Н	-6.089449	3.516881	-0.311778
Н	-5.779808	1.861305	0.320648
С	-1.215231	0.557262	-0.435268
Н	-1.477902	0.080902	0.517707
0	-1.763131	-0.157593	-1.524466
H	1.658128	-0.902721	-0.332193
C	0.308671	0.541725	-0.559653
Ĥ	0.566865	0.815417	-1.593020
0	0 692874	-0 776052	-0 264849
Ĉ	2 413861	1 840667	0.058756
й	2 894231	2 406195	0.863331
н	2.004201	2.463272	-0.840536
0	3 130909	0.665149	-0 240235
C C	-2 583040	-1 253758	-1 251444
н	-2 814394	-1 676265	-2 236591
C	-4 750174	-1 711096	-0 302031
н	-5 116106	-2 105081	-1 210823
\cap	-3 750085	-0.745205	-0.643275
C C	-1 040600	-0.745205	-0.366617
с ц	1 622761	1 964505	0.500017
\cap	-1.032701	-1.004000	1 001214
U U	-0.000020	-2.927540	-1.001314
	-0.115509	-2.301099	-0.922902
	-2.940039	-3.403747	-0.032015
	-3.230000	-3.922820	-0.960083
0	-2.411752	-4.310043	0.898875
Н	-1.537524	-4.564974	0.584489
	-4.189169	-2.797685	0.598042
Н	-4.953017	-3.580093	0.705103
0	-3.889683	-2.235281	1.863451
Н	-3.400382	-2.901333	2.360657
C	-5.897719	-0.940612	0.332784
Н	-6.628273	-1.654270	0.733636
Н	-6.403317	-0.346897	-0.433049
0	-5.452317	-0.037046	1.318873
Н	-4.964542	-0.555222	1.973698
С	3.914701	0.150279	0.809509
Н	3.342796	0.139994	1.745148
С	5.946683	1.065911	-0.039518
Н	5.389942	1.464247	-0.896858
0	5.038886	0.934232	1.071897
С	4.317920	-1.256669	0.400738
Н	4.810942	-1.716656	1.268232
0	3.155844	-1.986945	0.071729
Н	3.446043	-2.791046	-0.375195
С	5.299082	-1.224925	-0.762493
Н	4.779556	-0.843535	-1.647491
0	5.707323	-2.538620	-1.062742
Н	6.440142	-2.746242	-0.469104
С	6.472668	-0.309868	-0.430064
Н	7.111661	-0.215559	-1.313537
0	7.274296	-0.905736	0.573981
Н	6.929355	-0.650461	1.435418
С	7.019548	2.041181	0.377660
Н	7.715290	2.205997	-0.448393
Н	7.588266	1.664657	1.230326
Н	6.572453	2.997937	0.653383
Н	-2.795236	4.277500	-0.365805

Table S36: XYZ-coordinates of [β -an16+HJ⁺ion (²D').

С	0.311274	0.485989	1.888925
Н	-0.349412	1.005406	2.587695

0	1.525361	1.221237	1.909627
Н	2.162192	0.705631	1.368605
С	0.767947	-1.870123	1.505016
Н	0.508024	-2.765758	2.073938
0	0.431263	-0.796772	2.385534
С	-0.278895	0.548582	0.461072
Н	0.545131	0.613417	-0.260244
Ν	-1.105197	1.742939	0.309457
Н	-2.082209	1.601584	0.026073
С	-0.663966	2.971218	0.396646
0	0.540912	3.258852	0.746475
С	-1.555779	4.108057	0.067415
Н	-2.591975	3.860837	0.305146
Н	-1.469439	4.323576	-1.002624
Н	-1.235153	4.990487	0.619444
С	-1.066908	-0.715456	0.180448
Н	-1.857509	-0.838879	0.927082
0	-1.593364	-0.704025	-1.141512
Н	-1.421128	-3.139779	-0.497881
С	-0.108963	-1.898122	0.242599
Н	0.522742	-1.811541	-0.654796
0	-0.797213	-3.117578	0.243759
С	2.255515	-1.931558	1.224830
Н	2.477016	-2.803562	0.601960
Н	2.804955	-2.031634	2.164797
0	2.693688	-0.737753	0.575286
C	-2.965213	-0.635298	-1.315274
Н	-3.115334	-0.719368	-2.399672
C	-4.772548	0.915443	-1.006451
Н	-5.038750	0.896578	-2.074777
0	-3.389215	0.631587	-0.857103
C	-3.742715	-1.741144	-0.608904
Н	-3.532176	-1.712268	0.46/1/6
0	-3.320506	-2.964051	-1.165003
Н	-3.864409	-3.660064	-0.779933
	-5.235432	-1.523394	-0.780435
	-3.493020	-1.033233	-1.042400
U U	-0.009700	-2.323434	-0.001001
	-0.721002	-2.700922	-0.302909
С Ц	-5.025554	-0.127913	-0.300703
$\overline{0}$	-0.077300	-0.004177	1 003101
U Ц	-5 850200	-0.750270	1.093101
C	-1 078331	2 330563	-0 /82212
ц	-6.05/528	2.530505	-0.402212
н	-4 530204	3 039178	-1 183588
0	-4 349170	2 541668	0 758463
н	-4 698876	1 885682	1 374890
C	3 371958	-0.902558	-0.652160
н	2 753532	-1 498558	-1 332736
C	5 544249	-0.995676	0.334150
H	5.087068	-0.791957	1.311142
0	4.558092	-1.618141	-0.512067
Č	3.640494	0.480954	-1.223359
Ĥ	4.009950	0.322289	-2.246269
0	2.444218	1.230325	-1.256348
Ĥ	2.697804	2,119834	-1.531248
С	4.717802	1.216511	-0.435323
н	4.327522	1.469953	0.556973
0	5.001678	2.435896	-1.079090
Н	5.676315	2.248656	-1.744656
С	5.953986	0.338836	-0.274280
Н	6.663279	0.840325	0.391415

0	6.608270	0.205443	-1.522007
Н	6.236769	-0.551193	-1.986851
С	6.677319	-1.978976	0.491901
Н	7.150532	-2.195174	-0.468027
Н	6.307780	-2.914323	0.915642
Н	7.436927	-1.568151	1.160937
Н	1.066825	2.477786	1.140182

Table S37: XYZ-coordinates of [*α-bn16+H]*⁺ ion (E).

С	-1.624388	3.394047	-0.604686
Н	-1.863689	3.649747	-1.642581
0	-2.347869	4,200459	0.290119
Ĥ	-2.211452	5.126175	0.067733
C	0.337294	3 140930	0 734257
н	0.007201	3 822327	1 533300
0	-0 249444	3 532441	-0 508401
ĉ	-2 0/7733	1 056627	-0.301050
ц	1 602446	1.330027	1 062421
N	-1.003440	1.010024	-1.003431
	-3.494040	1.000207	-0.30/0/3
	-3.996500	2.079103	-0.070337
	-4.197402	0.815041	-0.755174
0	-3.700526	-0.303620	-1.121687
C	-5.6/8485	0.897410	-0.785660
н	-6.046574	1.891621	-0.536004
Н	-6.084447	0.16/019	-0.081191
Н	-6.024011	0.615518	-1.782978
С	-1.548708	1.532739	1.084450
Н	-2.008134	2.163229	1.850217
0	-1.994679	0.213116	1.387378
Н	1.324570	1.050821	2.254224
С	-0.047356	1.709717	1.112365
Н	0.399058	1.055018	0.354791
0	0.428690	1.392659	2.390643
С	1.839178	3.262254	0.559259
Н	2.327044	3.134889	1.529986
Н	2.076752	4.256863	0.172515
0	2.299401	2.294911	-0.374988
С	-1.204683	-0.837957	0.950492
Ĥ	-0.167960	-0.737376	1.293241
C	-0.437483	-1.867969	-1.069322
Ĥ	0 594538	-1 777951	-0 701984
0	-1 227047	-0.823943	-0 474969
Č	-1 813568	-2 131175	1 458504
н	-2 860962	-2 168055	1 127762
$\overline{0}$	-1 706268	-2 248036	2 85/018
Ц	-2 180077	-1 527783	2.004910
\hat{C}	-1.063272	-3 31/860	0.866360
С Ц	-1.003272	2 212260	1 274502
	-0.041302	-3.312200	1.274000
0	-1.715266	-4.320273	1.100152
	-1.868343	-4.500952	2.109256
C	-0.977583	-3.223426	-0.651097
Н	-0.278580	-3.994419	-1.003788
0	-2.250656	-3.409153	-1.238/61
Н	-2.642183	-4.191115	-0.832298
С	-0.461564	-1.618/48	-2.568458
Н	0.036390	-2.459100	-3.071120
Н	0.111207	-0.714195	-2.789671
0	-1.760506	-1.399144	-3.057191
Н	-2.276404	-2.191778	-2.861727
С	3.243485	1.383169	0.061414
Н	4.106585	1.891672	0.524779

С	3.528990	-0.526439	1.467923	
Н	4.436698	-0.058277	1.879092	
0	2.651089	0.512397	1.014971	
С	3.663185	0.593192	-1.167305	
Н	2.745880	0.171472	-1.600782	
0	4.349291	1.392102	-2.098517	
Н	3.753305	2.080637	-2.406231	
С	4.589959	-0.544452	-0.786946	
Н	5.532887	-0.119166	-0.412079	
0	4.830775	-1.391268	-1.886766	
Н	5.116998	-0.847708	-2.627525	
С	3.964927	-1.402074	0.303262	
Н	4.725268	-2.103597	0.674090	
0	2.854969	-2.114697	-0.206799	
Н	3.163062	-2.512850	-1.030059	
С	2.812107	-1.291082	2.554844	
Н	2.548374	-0.633707	3.386500	
Н	3.457890	-2.081887	2.942749	
Н	1.905330	-1.755760	2.163849	
Н	-2.708301	-0.464072	-1.005276	

Table S38: XYZ-coordinates of [α -bn16+HJ⁺ ion (²E).

С	-0.985574	3.703172	-0.369026
Н	-1.227100	4.080616	-1.368158
0	-1.549354	4.509120	0.628428
Н	-1.316457	5.427365	0.464863
С	0.978866	3.087318	0.848646
Н	0.824633	3.761976	1.700669
0	0.405709	3.649219	-0.332078
С	-1.561508	2.304633	-0.171506
Н	-1.170270	1.663141	-0.958429
Ν	-3.008552	2.264644	-0.280235
Н	-3.539945	2.705910	0.458528
С	-3.640633	1.481365	-1.120507
0	-2.989412	1.004412	-2.109001
С	-5.078706	1.169329	-0.924131
Н	-5.528246	1.758166	-0.124859
Н	-5.159259	0.109097	-0.659743
Н	-5.624142	1.326149	-1.856554
С	-1.128800	1.766643	1.197648
Н	-1.471587	2.443072	1.985639
0	-1.747378	0.527438	1.512668
Н	1.653597	0.798070	2.263959
С	0.381662	1.719574	1.190865
Н	0.701019	1.029256	0.401714
0	0.836929	1.284674	2.442086
С	2.469162	2.960838	0.588504
Н	2.978924	2.695353	1.519119
Н	2.856035	3.919519	0.233410
0	2.702943	1.983774	-0.418511
С	-1.231291	-0.640319	0.971012
Н	-0.140298	-0.698102	1.086160
С	-1.177744	-1.858390	-1.070136
Н	-0.083750	-1.974859	-1.022338
0	-1.571210	-0.672493	-0.401357
С	-1.895962	-1.788000	1.710528
Н	-2.983068	-1.642887	1.639391
0	-1.472826	-1.863876	3.048458
Н	-1.646221	-1.018701	3.473886
С	-1.526178	-3.110523	1.064149
Н	-0.450625	-3.283987	1.216073

0	-2.286096	-4.171946	1.593441
Н	-2.228473	-4.136588	2.553488
С	-1.803898	-3.088721	-0.428610
Н	-1.364662	-3.986423	-0.883274
0	-3.205206	-3.067457	-0.673484
Н	-3.608929	-3.734579	-0.104647
С	-1.583231	-1.686915	-2.523482
Н	-1.365910	-2.598229	-3.087460
Н	-1.034295	-0.858858	-2.973960
0	-2.975978	-1.368543	-2.661046
Н	-3.456982	-1.999840	-2.090322
С	3.474468	0.883808	-0.088750
Н	4.461149	1.187264	0.302162
С	3.470807	-1.112323	1.225517
Н	4.496496	-0.873594	1.547442
0	2.803801	0.111081	0.896106
С	3.607152	0.080623	-1.373026
Н	2.584776	-0.110542	-1.727080
0	4.365755	0.758106	-2.343850
Н	3.917520	1.581335	-2.557477
С	4.288096	-1.249173	-1.120649
Н	5.331960	-1.062545	-0.828121
0	4.234404	-2.069305	-2.266295
Н	4.567243	-1.561459	-3.012910
С	3.586917	-2.003719	-0.001087
Н	4.199868	-2.874521	0.270542
0	2.303192	-2.427437	-0.421732
Н	2.446383	-2.834741	-1.284650
С	2.716750	-1.753571	2.365969
Н	2.703532	-1.098739	3.240320
Н	3.201219	-2.689079	2.654298
Н	1.689139	-1.977269	2.074855
Н	-3.157694	-0.011289	-2.367122

Table S39: XYZ-coordinates of $[\beta-bn16+H]^+$ ion (E').

-0.915180	2.802992	1.029579
-1.483213	2.516673	1.931390
-1.161089	4.139023	0.697739
-0.766541	4.729485	1.348360
0.817966	1.357079	1.628890
0.224160	1.042242	2.502407
0.447756	2.680715	1.256035
-1.348692	1.949128	-0.166193
-0.820332	2.327344	-1.049856
-2.791041	1.992403	-0.414619
-3.280439	1.084316	-0.383830
-3.459306	2.982588	-0.948803
-2.957216	4.159110	-1.121538
-4.849510	2.781728	-1.412371
-5.360234	3.741580	-1.463577
-5.369937	2.093626	-0.742353
-4.823393	2.344423	-2.416080
-0.935409	0.493220	0.069076
-1.541745	0.090939	0.890739
-1.141252	-0.244280	-1.117838
1.814208	-0.997948	0.721490
0.533124	0.416845	0.457797
1.135071	0.742543	-0.398943
0.842057	-0.908327	0.806543
2.275234	1.362493	2.040548
2.483540	0.437394	2.585601
	-0.915180 -1.483213 -1.161089 -0.766541 0.817966 0.224160 0.447756 -1.348692 -0.820332 -2.791041 -3.280439 -3.459306 -2.957216 -4.849510 -5.360234 -5.369937 -4.823393 -0.935409 -1.541745 -1.141252 1.814208 0.533124 1.135071 0.842057 2.275234 2.483540	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	2.453190	2.212248	2.707143
0	3.113235	1.471004	0.903018
С	-2.076589	-1.278168	-1.086781
Н	-2.009942	-1.743148	-2.077743
С	-4.457897	-1.564587	-0.863434
Н	-4.549854	-2.078213	-1.832151
0	-3.347307	-0.674301	-0.906391
С	-1.821603	-2.323733	-0.003343
Н	-1.808718	-1.833149	0.978494
0	-0.629241	-3.018590	-0.228080
Н	0.086232	-2.416060	0.033506
С	-2.952899	-3.334649	0.026918
Н	-2.964786	-3.886687	-0.925447
0	-2.802819	-4.216874	1.111673
Н	-1.895367	-4.539787	1.099810
С	-4.285471	-2.629023	0.206031
Н	-5.095128	-3.362659	0.091061
0	-4.364662	-2.014584	1.480391
Н	-4.112561	-2.679411	2.131953
С	-5.689595	-0.696845	-0.653417
Н	-6.557685	-1.343857	-0.476264
Н	-5.886545	-0.122110	-1.561990
0	-5.511597	0.237683	0.387167
Н	-5.294511	-0.267564	1.182569
С	4.117973	0.519566	0.811753
Н	4.705413	0.476646	1.745436
С	4.463592	-1.816455	0.426982
Н	5.079497	-1.859831	1.338009
0	3.520326	-0.743416	0.581425
С	5.000140	0.899646	-0.362365
Н	4.358470	0.960292	-1.250791
0	5.686731	2.107057	-0.132498
Н	5.046837	2.822843	-0.104266
С	6.049169	-0.174076	-0.584525
Н	6.714293	-0.197355	0.292722
0	6.787182	0.072269	-1.756936
Н	7.098053	0.982401	-1.728268
С	5.391805	-1.538354	-0.747320
Н	6.181652	-2.304317	-0.738329
0	4.652327	-1.598426	-1.940598
Н	5.226641	-1.266035	-2.639096
С	3.671469	-3.091665	0.270627
Н	3.031313	-3.256193	1.140918
Н	4.349825	-3.943152	0.183561
Н	3.063301	-3.049193	-0.634820
Н	-2.138845	4.303974	-0.577802