Supplementary Information

Magnetically reusable Ce-MOF/GO/Fe₃O₄ composite for effectively photocatalytic degradation of chlortetracycline

Yuting Bai,^{a,c} Derek Hao,^e Sisi Feng,^{*a,b} Liping Lu,^{*a} and Qi Wang^{*d}

^aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China

^bKey Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi, 030006, P. R. China

^cDepartment of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi, 030600, China

^dSchool of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

^eCentre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW

2007, Australia

* Corresponding Authors.

E-mail addresses: <u>ssfeng@sxu.edu.cn</u> (S. Feng), <u>luliping@sxu.edu.cn</u> (L. Lu), and <u>wangqi8327@zjgsu.edu.cn</u> (Q. Wang).

Tel: ++86-351-7017974;

Fax: ++86-351-7011022.

Experimental

Preparation of photocatalysts

Preparation of MOF-1

MOF-1 was prepared according to the reported literature.¹ The reaction route of **MOF-1** is shown in **Scheme S1**. Ce(NO₃)₃·6H₂O (0.434 g, 1 mmol), H₃BTB (0.438 g, 1 mmol) and 20 mL N,N'-dimethylformamide (DMF) were placed in a 25 mL Teflon-lined steel autoclave, and the mixture was stirred at room temperature until all the solids were dissolved. One drop of triethylamine was added to the solution and kept stirring until the sediment disappears. The autoclave was sealed, heated up to 120°C and kept at this temperature for 3 days. Needle-shaped light yellow crystals were obtained.

Scheme S1. Synthesis route of MOF-1.

Preparation of 1/GO/Fe₃O₄

The GO and Fe₃O₄ were prepared according to a method reported in references.^{2,3}

A two-step process was developed for preparing the $1/\text{GO/Fe}_3\text{O}_4$ composite. Firstly, the 1/GO composite was prepared by treating the ethanol dispersion of **MOF-1** (100 mg) and GO (12 mg) under sonication for 15 minutes, respectively, then, mixing the dispersion and maintaining reflux at 90 °C for 4 hours. The second step was to mix the obtained 1/GO (5 mg) with Fe₃O₄ (6 mg) into ethanol and ultrasound for 1 hour to achieve the self-assembly of three components. Finally, the powder in the suspension was collected via a centrifugal process, dried at 60°C, and denoted as $1/\text{GO/Fe}_3\text{O}_4$ -5. The other composites of $1/\text{GO/Fe}_3\text{O}_4$ -9, $1/\text{GO/Fe}_3\text{O}_4$ -15, and $1/\text{GO/Fe}_3\text{O}_4$ -22 were prepared using the same procedure just with the weight ratio of 4:1, 8:3, and 1:1 (**MOF-1**:GO) respectively.

Materials Characterization

The phase composition of the composite photocatalyst was measured on a Bruker D8 Advance X-ray diffractometer employing Cu-K α radiation with a 2 θ value ranging from 5 to 60°. The Fourier transform infrared spectroscope (FTIR) spectra were carried out using a BRUKER TENSOR27 spectrometer with KBr disks in the range of 400 to 4000 cm⁻¹. The surface morphology and particle dimension of the prepared samples were observed by a field emission scanning electron microscope (FE-SEM) (Caisi Sigma 300). The optical properties were analyzed by UV-Vis spectrophotometer (TU-1950) using fine BaSO₄ powder as the reference standard. The identification of the elemental composition and chemical state in the composite was carried out by an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha+) with an Al K α X-ray source at 1486.6 eV. The amount of •OH and •O₂⁻ produced by the composite in the presence of 5,5-dimethyl-1-pyrroline Noxide (DMPO) was measured by electron spin resonance (ESR). The electrochemical properties of $1/GO/Fe_3O_4$ including electrochemical impedance spectroscopy (EIS), Transient photocurrent responses (I-t), Circulating Volan Curves (CV), and Mott-Schottky spectra (M-S) were measured over an electrochemical workstation (RST5200F) with a three-electrode system. Furthermore, The intermediates during CTC photodegradation were detected with liquid chromatography-mass spectrometry (LC-MS, Thermo Scientific Q Exactive).

Evaluation of photocatalytic activity

The photocatalytic activity of $1/\text{GO/Fe}_3\text{O}_4$ composite was assessed by using CTC as a target pollutant in aqueous solution under irradiation by a solar simulator (300 W Xenon lamp). The as-prepared photocatalyst was dispersed into 20 mL of 20 mg L⁻¹ CTC solution. Before the irradiation, the suspension was magnetically stirred in the dark for 30 min to achieve adsorption-desorption equilibrium. When equilibrium is established, the suspension is illuminated under visible light, followed by adding H₂O₂ to the mixed solution. During the photoreaction process, 2 mL solution was taken out every 30 min and transferred for UV analysis. The absorbance value at the maximum absorption wavelength of 365 nm was measured using the UV spectrophotometer to calculate the CTC concentration in the degraded solution.

Fig. S1 The experimental PXRD pattern and the JCPDS card of Fe₃O₄.

Fig.S2. SEM images of MOF-1 (a), GO (b), Fe_3O_4 (c), 1/GO (d), and $1/GO/Fe_3O_4$ (e and f).

Fig.S3. The corresponding SEM elemental mapping images of elements Ce, O, C, and Fe in the selected area (a-e) of $1/\text{GO/Fe}_3\text{O}_4$.

Fig. S4. The high-resolution XPS spectra of O1s.

Fig. S5. The photocatalytic performance of Fe₃O₄.

Fig. S6. Photographic image of CTC before and after degradation by 1/GO/Fe₃O₄ and recovery of the catalysts under an external magnetic field.

for the degradation of CTC.										
Entry	[Photocatalyst] (g/L)	$C_{\rm CTC}(\rm mg/L)$	Light	¶ _{CTC} (%)	Time	Recycling	Ref.			
			Source		(min)	method				
1	Ce/Bi ₂ WO ₆ (0.5)	CTC (25)	UV-Vis light	100.0	201	_	4			
2	g-C ₃ N ₄ nanosheets	CTC (50)	Visible light	98.7	120	Filtration	5			
	/schwertmannite (0.2)									
3	BiVO ₄ (1.5)	CTC (10)	Visible light	88.0	120	Filtration	6			
4	1/GO/Fe ₃ O ₄ (0.3)	CTC (20)	UV-Vis light	88.0	180	Magnetic separation	This work			
5	Ag ₃ PO ₄ /MIL-53(Fe) (0.5)	CTC (20)	Visible light	85.5	60	Centrifugation	7			
6	CuO/ZnO (0.7)	CTC (10)	UV-Vis light	91.1	210	-	8			
7	BiOCl/TiO ₂ (0.5)	CTC (20)	Visible light	75.1	120	Filtration	9			
8	$Zn_{0.75}Mn_{0.75}Fe_{1.5}O_4/$	CTC (10)	Visible light	73.0	240	Centrifugation	10			
	ZnFe ₂ O ₄ /ZnO (0.7)									
9	Cu_3P -ZnSnO ₃ -g-C ₃ N ₄ (1.0)	CTC (10)	Visible light	63.5	60	Centrifugation	11			

Table S1. Comparison of photocatalytic performance of $1/GO/Fe_3O_4$ composite with some reported photocatalystsfor the degradation of CTC

Fig. S7. The *k* values for CTC degradation over $1/\text{GO/Fe}_3\text{O}_4$ with various reaction parameters: (a) catalyst type, (b) loading amount of GO, (c) catalyst dosage, and (d) H₂O₂ concentration. Except for the investigated parameter, other parameters were set as follows: CTC concentration = 20 mg L⁻¹, catalyst dosage = 0.3 g L⁻¹, and H₂O₂ concentration = 30 mM.

Fig. S8. Mott-Schottky plots (a) and the band gaps (b) of MOF-1.

(d)

(g)

CTC-A-1_210402164950 #784 RT: 8.20 AV: 1 NL: 4.48E5 T: FTMS - p ESI Full ms [150.0000-1000.0000] QН 100 ОН 90-80 316.95 70 Relative Abundance 60 186.93 H₃C CH3 254.92 ОН CH₃ Ň 50 238<u>.9</u>3 306<u>.92</u> 333.94 384.94 40 452.92 520.91 30-442.89 ő óн óн 558.89 <u>588</u>.90 20 616.85 684.84 10 752.82 833.81 918.78 986.78 918.10 900.1 0 1000 600 300 400 500 700 800 200 900 m/z

Fig. S9. (a) LC of CTC aqueous solution without catalyst. (b) MS corresponding to the CTC aqueous solution without catalyst at a retention time of 8.28 min in LC. (c) LC after photocatalytic degradation of CTC aqueous

solution by 1/GO/Fe₃O₄. (d-g) MS corresponding to the degradation of CTC at a retention time of 8.20 - 8.30 min

in LC, respectively.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compounds	RT (min)	Formula	m/z	Proposed structures
CTC18.30 $C_{22}H_{23}CIN_2O_8$ $[M+Na^+]:501$ $\prod_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j$	CTC	8.30	C ₂₂ H ₂₃ ClN ₂ O ₈	[M+H+]: 479	CI OH OCH3 H OH OOH OH OH OH OOH OH OH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTC ₁	8.30	C ₂₂ H ₂₃ ClN ₂ O ₈	[M+Na ⁺]: 501	$\begin{array}{c} Cl & H_3C & CH_3 \\ OH & H & H & H \\ OH & OH & OH & OH \\ O$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTC ₂	8.27	C ₂₁ H ₂₀ NO ₉	[M+H ⁺]: 419	$\begin{array}{c} OH \\ OH $
CTC48.26 $C_{18}H_{14}O_3$ $[M+H^+]: 279$ $\underset{OH}{\longleftrightarrow}$ CTC58.26 $C_{15}H_{16}O_4$ $[M+H^+]: 261$ $\underset{OH}{\longleftrightarrow}$ CTC68.20 $C_{14}H_{13}CIO_2$ $[M+H^+]: 249$ $\underset{OH}{\longleftrightarrow}$ CTC78.30 $C_{10}H_7CIO_4$ $[M+H^+]: 227$ $\underset{OH}{\longleftrightarrow}$	CTC ₃	8.20	C ₂₁ H ₂₃ NO ₆	[M+H ⁺]: 385	$\begin{array}{c} OH \\ CH_3 \\ H_3C \\ H_1 $
CTC58.26 $C_{15}H_{16}O_4$ $[M+H^+]: 261$ $\downarrow \downarrow $	CTC ₄	8.26	$C_{18}H_{14}O_3$	[M+H ⁺]: 279	OH O OH
$CTC_{6} \qquad 8.20 \qquad C_{14}H_{13}ClO_{2} \qquad [M+H^{+}]: 249 \qquad \qquad$	CTC ₅	8.26	$C_{15}H_{16}O_4$	[M+H ⁺]: 261	ОН О ОН ОН
CTC ₇ 8.30 $C_{10}H_7CIO_4$ [M+H ⁺]: 227	CTC ₆	8.20	C ₁₄ H ₁₃ ClO ₂	[M+H ⁺]: 249	OH OH OH OH
	CTC ₇	8.30	C ₁₀ H ₇ ClO ₄	[M+H ⁺]: 227	CI OH OH OH
$CTC_8 \qquad 8.30 \qquad C_9H_9ClO_2 \qquad [M+H^+]: 185 \qquad \qquad$	CTC ₈	8.30	C ₉ H ₉ ClO ₂	[M+H ⁺]: 185	CI CH ₃ CH ₃ CH ₃

Table S2. The structural information of the possible intermediates products.

Scheme S2. Proposed degradation paths of CTC by 1/GO/Fe₃O₄ under visible light irradiation.

References

- 1 Z. Lin, R. Zou, J. Liang, W. Xia, D. Xia, Y. Wang, J. Lin, T. Hu, Q. Chen, X. Wang, Y. Zhao and A. K. Burrell, *J. Mater. Chem.*, 2012, **22**, 7813–7818.
- 2 Y. Fu, J. Wang, Q. Liu and H. Zeng, Carbon, 2014, 77, 710–721.
- 3 H. Deng, X. Li, Q. Peng, X. Wang, J. Chen and Y. Li, *Angew Chem Int Ed*, 2005, 44, 2782–2785.
- 4 S. S. Fekr, R. Fazaeli, M. Ardjmand and M. Rafizadeh, *Russ. J. Phys. Chem. A*, 2021, 95, 1238–1246.
- 5 X. Qiao, X. Liu, W. Zhang, Y. Cai, Z. Zhong, Y. Li and J. Lü, *Sep. Purif. Technol.*, 2021, **279**, 119760.
- 6 M. Zhang, Q. Shi, X. Cheng, J. Yang, Z. Liu, T. Chen, Y. Qu, J. Wang, M. Xie and W. Han, *Chem. Eng. J.*, 2020, 400, 125871.
- 7 L. Xie, Z. Yang, W. Xiong, Y. Zhou, J. Cao, Y. Peng, X. Li, C. Zhou, R. Xu and Y. Zhang, *Appl. Surf. Sci.*, 2019, 465, 103–115.
- 8 J. Liu, X. Yu, L. Wang, M. Guo, W. Zhu and S. Tian, *Water Sci. Technol.*, 2019, 80, 1249– 1256.

- 9 S. Bao, H. Liang, C. Li and J. Bai, J. Photochem. Photobiol. Chem., 2020, 397, 112590.
- 10 J. Fu, X. Yu, Z. Li, Y. Zhang, W. Zhu and J. Liu, Water. Air. Soil Pollut., 2021, 232, 12.
- 11 F. Guo, X. Huang, Z. Chen, L. Cao, X. Cheng, L. Chen and W. Shi, Sep. Purif. Technol., 2021, 265, 118477.