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The particle swarm optimization (PSO) method within the evolutionary 

algorithm as implemented in the Crystal structure AnaLYsis by Particle 

Swarm Optimization (CALYPSO) code was employed to find the lowest 

energy structures of BSx (x = 0.5, 1, 1.5, 2) monolayers. In the first step, 

random structures with certain symmetry are constructed in which atomic 

coordinates are generated by the crystallographic symmetry operations.

Up to now, a few BSx (e.g. B2S, BS, and B2S3) monolayers have been 

reported. To determine the relative stability of our predicted b-BS2 

monolayer, we fully relaxed the other known BSx monolayers and built the 

convex hull, as shown in Fig. S1. The b-BS2 monolayer, sitting on the solid 

line, is thermodynamically stable with respect to decomposition into B and 

S elements.
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Fig. S1. (a) Relative formation energy of BSx (x = 0.5, 1, 1.5, 2) monolayers with 
respect to B and S atoms at 0 K.

Fig. S2. (a)-(c) Geometries of the BS2 bilayer with AA, AB, and AC stacking patterns, 
corresponding their interlayer distances and interaction energies.



Fig. S3. The BS2 monolayer structures of (a) original, (b) 300 K, and (c) 500 K at the 
end of 5 ps with a time step of 1.0 fs AIMD simulations.

Fig. S4. Geometric structures for (a) Li, (b) Mg, and (c) Ca adsorption on the BS2 
monolayer of side views.

Table S1 Comparison of capacity of previously reported 2D materials with b-BS2 
monolayer for NIBs and KIBs.

Na K
PC6 1301.071 7812

PC3 1200 3 12004

Si3C 11155 8365

BC3 5726 8586

B2C 1596
BC7 870.257

B3P 1706
Penta-BN2 690.238 690.238

B2S 831.489

b-BS2 2146.08 715.36
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