Metallic two-dimensional *b*-BS₂ monolayer for superior Na/K-ion batteries anodes

Zhifang Yang, Wenliang Li,* Jingping Zhang*

Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China; E-mail: jpzhang@nenu.edu.cn; liwl926@nenu.edu.cn

The particle swarm optimization (PSO) method within the evolutionary algorithm as implemented in the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code was employed to find the lowest energy structures of BS_x (x = 0.5, 1, 1.5, 2) monolayers. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations.

Up to now, a few BS_x (e.g. B_2S , BS, and B_2S_3) monolayers have been reported. To determine the relative stability of our predicted *b*- BS_2 monolayer, we fully relaxed the other known BS_x monolayers and built the convex hull, as shown in Fig. S1. The *b*- BS_2 monolayer, sitting on the solid line, is thermodynamically stable with respect to decomposition into B and S elements.

Fig. S1. (a) Relative formation energy of BS_x (x = 0.5, 1, 1.5, 2) monolayers with respect to B and S atoms at 0 K.

Fig. S2. (a)-(c) Geometries of the BS_2 bilayer with AA, AB, and AC stacking patterns, corresponding their interlayer distances and interaction energies.

Fig. S3. The BS_2 monolayer structures of (a) original, (b) 300 K, and (c) 500 K at the end of 5 ps with a time step of 1.0 fs AIMD simulations.

Fig. S4. Geometric structures for (a) Li, (b) Mg, and (c) Ca adsorption on the BS_2 monolayer of side views.

Table S1 Comparison of capacity of previously reported 2D materials with b-BS₂ monolayer for NIBs and KIBs.

_

	Na	K
PC_6	1301.07^{1}	781 ²
PC ₃	1200 ³	12004
Si ₃ C	1115 ⁵	8365
BC_3	572 ⁶	8586
B_2C	1596	
BC_7	870.257	
B ₃ P	1706	
$Penta-BN_2$	690.23 ⁸	690.23 ⁸
B_2S	831.489	
b -BS $_2$	2146.08	715.36

References

1. Yang, M.; Kong, F.; Chen, L.; Tian, B.; Guo, J., Potential application of two-dimensional PC₆ monolayer as an anode material in alkali metal-ion (Li, Na, K) batteries. *Thin Solid Films* **2023**, *769*, 139734.

2. Dou, K.; Ma, Y.; Zhang, T.; Huang, B.; Dai, Y., Prediction of two-dimensional PC₆ as a promising anode material for potassium-ion batteries. *Phys. Chem. Chem. Phys* **2019**, *21*, 26212-26218.

3. Jana, S.; Thomas, S.; Lee, C. H.; Jun, B.; Lee, S. U., Rational design of a PC₃ monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries. *Carbon* **2020**, *157*, 420-426.

4. Guan, X. P.; Song, H. J.; Tang, Y.; Zhong, X. L.; Wang, J. B.; Cheng, J. J.; Zou, D. F., Theory prediction of PC₃ monolayer as a promising anode material in potassium-ion batteries. *Ionics* **2021**, *27*, 2465-2471.

5. Wang, Y.; Li, Y., Ab initio prediction of two-dimensional Si₃C enabling high specific capacity as an anode material for Li/Na/K-ion batteries. *J.Mater. Chem. A* **2020**, *8*, 4274-4282.

6. Joshi, R. P.; Ozdemir, B.; Barone, V.; Peralta, J. E., Hexagonal BC₃: A Robust Electrode Material for Li, Na, and K Ion Batteries. *J.Phys. Chem. Lett.* **2015**, *6*, 2728-2732.

7. Belasfar, K.; El Kenz, A.; Benyoussef, A., First-principles study of BC₇ monolayer an ultra-high capacity anode for lithium-ion and sodium-ion batteries applications. *Mater. Chem. Phys.* **2021**, *257*, 123751.

8. Yang, M.; Chen, L.; Kong, F.; Guo, J.; Shu, H.; Dai, J., Metallic Penta-BN₂ monolayer: A novel platform for non-lithium-ion batteries with high capacity and splendid cyclicity. *Mat. Sci. Semicon. Proc.* **2022**, *149*, 106849.

9. Lei, S.; Chen, X.; Xiao, B.; Zhang, W.; Liu, J., Excellent Electrolyte Wettability and High Energy Density of B₂S as a Two-Dimensional Dirac Anode for Non-Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2019**, *11*, 28830-28840.