A Novel Class of Multivalent Ionic Conductors of the La₃CuSiS₇

Structure Type: the Results of Stepwise ICSD Screening

Artem A. Kabanov, *, *, § Yelizaveta A. Morkhova, *, *, III Vladislav T. Osipov, * Manuel Rothenberger, *

Tilmann Leisegang, [¶] Vladislav A. Blatov [‡]

AUTHOR ADDRESS

[#] Samara Center for Theoretical Materials Science (SCTMS), Samara State Technical University,

Molodogvardeyskaya St. 244, 443100 Samara, Russia

[§] P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Novo-Sadovaya Str. 18, 443011

Samara, Russia

Samara State Medical University, Chapayevskaya St. 89, Samara, Russia

[¶] Institute of Experimental Physics, Energy Materials, TU Bergakademie Freiberg, 09599, Freiberg,

Germany

*e-mail: artkabanov@mail.ru, eliztimofeeva@mail.ru

Supplementary information

WI	Environmental anion	Conductor	Reference
		$Mg_2Mo_6S_8$	DOI: 10.1038/35037553, DOI: 10.1103/PhysRevB.67.104103, DOI: 10.1002/adma.200701495
		Mg _{0.224} TiS ₂	DOI: 10.1021/acs.chemmater.8b00552,
	-	MgCo ₂ S ₄	DOI: 10.1021/acs.citerininacei./b04400
			Patent: US9077032B2, DOI: 10.1021/acs.inorgchem.8b01417,
		MgCr ₂ S ₄	DOI: 10.1039/C6CP08284J
	-	$MgFe_2S_4$	DOI: 10.1039/C6CP08284J
		$MgIn_2S_4$	DOI: 10.1038/s41467-017-01772-1
		MgNi ₂ S ₄	DOI: 10.1039/C6CP08284J
	-	MgPS₃	DOI: 10.1016/j.ssi.2013.10.037
	-	MgSc ₂ S ₄	DOI: 10.1038/s41467-017-01772-1
	-	$MgMn_2S_4$	DOI: 10.1039/C6CP08284J
		MgMo ₆ S ₈	DOI: 10.1021/cm061656f, DOI: 10.1103/PhysRevB.67.104103,
		0 00	DOI: 10.1016/j.jpowsour.2015.12.009
	S ²⁻		Link: https://search.proquest.com/docview/2283937545?pq-
		IVIg11 ₂ S ₄	origsite=gscholar, DOI: 10.1021/acs.chemrev.6b00614,
			DOI: 10.1039/C6CP08284J
		MgV_2S_4	Link. https://search.proquest.com/docview/2265957545;pq-
	-	MgV-S.	DOI: 10.1038/c/1/67-017-01772-1
	·	MgLuss.	DOI: 10:1030/34140/-01/-01/72-1
	-	MgTm_S.	DOI: 10.1039/C9CC09510A
		MgFr ₂ 54	DOI: 10.1039/C9CC09510A
		MgHo-S.	DOI: 10.1039/C9CC09510A
	-		DOI: 10.1039/C9CC09510A
Mg ²⁺	-	MgTh ₂ S ₄	DOI: 10.1039/C9CC09510A
		MgSm ₂ S ₄	DOI: 10.1039/C9CC09510A
	-	MgPm ₂ S ₄	DOI: 10.1039/C9CC09510A
	-	MgNd ₂ S ₄	DOI: 10.1039/C9CC09510A
	-	MgPr ₂ S ₄	DOI: 10.1039/C9CC09510A
	-	MgLa ₂ S ₄	DOI: 10.1039/C9CC09510A
		0 2 4	Patent: US9077032B2,
		MgCr ₂ Se ₄	Link: https://search.proquest.com/docview/2283937545?pq-
			origsite=gscholar
		MgIn ₂ Se ₄	DOI: 10.1038/s41467-017-01772-1
		MgGa ₂ S ₄	DOI: 10.1021/acsomega.9b00482
		MaMo So	DOI: 10.1002/adma.200701495,
	_	101g10106368	DOI: 10.1016/j.jpowsour.2015.12.009
	-	$MgSc_2Se_4$	DOI: 10.1038/s41467-017-01772-1
	-	MgY_2Se_4	DOI: 10.1038/s41467-017-01772-1
	So ²⁻	$MgLu_2Se_4$	DOI: 10.1039/C9CC09510A
	Je	$MgTm_2Se_4$	DOI: 10.1039/C9CC09510A
		$MgEr_2Se_4$	DOI: 10.1039/C9CC09510A
		MgHo ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgDy ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgTb ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgSm ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgPm ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgNd ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgPr ₂ Se ₄	DOI: 10.1039/C9CC09510A
		MgLa ₂ Se ₄	DUI: 10.1039/C9CC09510A
Ca²+	S2-	CaMo ₆ S ₈	DOI: 10.1039/C7CP03378H, DOI: 10.1016/j.jpowsour.2015.12.009

Table S1. Previously reported Mg²⁺-, Ca²⁺-, Zn²⁺-, Al³⁺-ionic conducting chalcogenides, on the basis of which the criteria for the GT analysis were parametrized.

		CaLa ₂ S ₄	DOI: 10.1016/0025-5408(81)90084-2
		CaCe ₂ S ₄	DOI: 10.2320/matertrans1960.22.399
			DOI: 10.2320/matertrans1960.22.399,
		Cd _{0.5} 113 ₂	DOI: 10.1021/acs.chemmater.7b04406
		ZnIn ₂ S ₄	DOI: 10.1038/s41467-017-01772-1
		ZnSc ₂ S ₄	DOI: 10.1038/s41467-017-01772-1
	S ²⁻	ZnY ₂ S ₄	DOI: 10.1038/s41467-017-01772-1
		ZnMo ₃ S ₄	DOI: 10.1016/0022-4596(87)90179-4
		ZnPS₃	DOI: 10.1021/acs.chemmater.9b00207
Zn ²⁺	Zn ²⁺	ZnMo ₆ S ₈	DOI: 10.1016/0022-4596(87)90179-4
		ZnMo ₆ Se ₈	DOI: 10.1016/0022-4596(87)90179-4
		ZnY ₂ Se ₄	DOI: 10.1038/s41467-017-01772-1
	Se ²⁻	ZnSc ₂ Se ₄	DOI: 10.1038/s41467-017-01772-1
		ZnIn ₂ Se ₄	DOI: 10.1038/s41467-017-01772-1
		Zn _{0.5} Nb ₆ Se ₈	DOI: 10.1016/0025-5408(87)90261-3
		AlCr ₂ S ₄	DOI: 10.1039/C6CP08284J
		AlCo ₂ S ₄	DOI: 10.1039/C6CP08284J
		AlNi ₂ S ₄	DOI: 10.1039/C6CP08284J
Al ³⁺	S ²⁻	AlMn ₂ S ₄	DOI: 10.1039/C6CP08284J
		$AI_{13}TI_3S_{21}$	DOI: 10.1002/chem.201901438
		AIPS ₄	DOI: 10.1002/chem.201901438
		Al _{0.44} La ₃ Si _{0.93} S ₇	DOI: 10.1002/chem.201901438

Table S2. 24 promising ternary and quaternary Mg-/S(Se,Te)-containing compounds after the GT analysis sorted in ascending order of the migration barrier energy E_m from BVSE. Electronic band gap energies E_g (if any) were taken from <u>https://materialsproject.org</u>. The theoretical gravimetric capacity C_g was calculated for compounds with electrochemically active transition metals (if the compound does not contain a transition metal, it is indicated as a "SE").

		Snace		GT									
Framework type	Chemical formula	Group symmetry	Dimension of migration	Direction of migration	R _{sd} , Å	r _{chan} , Å	E _m (BVSE), eV	E _g , eV	C _g , mAh/g	<i>ρ,</i> g/cm³	<i>Cv,</i> mAh/ cm ³	GII	ICSD-#
[M ₂ E ₄] ²⁻ M=Cr, Yb; E=S, Se,	MgYb ₂ Se ₄	Fd-3m	3D	-	2.467	1.828	0.13	0.00	SE	6.083	-	0.29	76053
Те	MgYb ₂ S ₄	Fd-3m	3D	-	2.267	1.635	0.43	0.00	SE	5.022	-	0.19	642803
[SnSe ₄] ⁴⁻	Mg_2SnSe_4	Pnma	1D	[010]	2.191	1.704	0.62	1.35	SE	4.729	-	0.57	642819
[Al ₂ Se ₈] ¹⁰⁻	$Mg_5Al_2Se_8$	Pna2 ₁	1D	[001]	2.298	1.712	0.80	-	SE	4.128	-	0.31	100113
	Mg _{0.5} Tb ₃ GeS ₇	<i>P</i> 6 ₃	1D	[001]	2.274	1.642	1.02	-	SE	5.425	-	0.11	154786
$[W_3]E_7$ $W_1 = 1, La, Ce, PI,$	MgLa ₆ Si ₂ S ₁₄	P63	1D	[001]	2.043	1.526	1.08	-	SE	4.238	-	0.11	84832
	Mg _{0.5} Pr ₃ GeS ₇	<i>P</i> 6 ₃	1D	[001]	2.009	1.504	1.10	-	SE	4.717	-	0.14	154782
1-Ge, 31, L-3, 3e, Te	MgLa ₆ Ge ₂ S ₁₄	P63	1D	[001]	2.015	1.528	1.14	-	SE	4.455	-	0.12	84831
[M ₃ ME ₇] ²⁻ M= La, Ce; M=Al; E=S, Se, Te	$MgLa_3AlS_7$	<i>P</i> 6 ₃	1D	[001]	2.025	1.541	1.17	2.30	SE	4.220	-	0.21	608298
[M₃TE ₇] ⁻ M=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er; T=Ge, Si; E=S, Se, Te	Mg _{0.5} Ce ₃ GeS ₇	P6 ₃	1D	[001]	2.042	1.513	1.23	-	SE	4.606	-	0.15	240913
[M ₂ E ₄] ²⁻ M=Cr, Yb; E=S, Se, Te	Mg(Ga _{0.1} Cr _{0.9}) ₂ S ₄	Fd-3m	3D	-	1.509	2.087	1.25	1.00	309	3.378	1044	0.10	107568
[ME ₄] ⁴⁻ M=Si, Ge, Sn; E=S, Se, Te	Mg_2GeS_4	Pnma	3D	-	2.061	1.581	1.25	2.31	SE	2.846	-	0.07	636952
[M ₃ TE ₇] ⁻ M=Y, La, Ce, Pr,	Mg _{0.5} Sm ₃ GeS ₇	<i>P</i> 6 ₃	1D	[001]	2.219	1.620	1.29	-	SE	5.089	-	0.11	154784
Nd, Sm, Gd, Tb, Dy, Ho, Er; T=Ge, Si; E=S, Se, Te	$Mg_{0.5}Nd_3GeS_7$	<i>P</i> 6 ₃	1D	[001]	2.204	1.505	1.32	-	SE	4.834	-	0.12	154783
[M ₃ ME ₇] ²⁻ M= La, Ce; M=Al; E=S, Se, Te	MgCe ₃ AlS ₇	<i>P</i> 6 ₃	1D	[001]	2.029	1.523	1.33	0.18	SE	4.333	-	0.11	606475
[M ₃ TE ₇] ⁻ M=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Fr:	MgosGd2GeSz	<i>P</i> 6 ₂	1D	[001]	2,191	1.602	1.43	-	SE	5.319	-	0.35	154785
T=Ge, Si; E=S, Se, Te		5		[]									
[ME ₄] ⁴⁻ M=Si, Ge, Sn; E=S,	Mg_2SnS_4	Pnma	3D	-	2.094	1.609	1.49	2.13	SE	3.238	-	0.10	243675
Se, Te	Mg ₂ SiS ₄	Pnma	3D	-	2.013	1.551	1.55	2.97	SE	2.436	-	0.13	642791
	Mg _{0.5} Dy₃GeS ₇	P63	1D	[001]	2.173	1.594	1.56	-	SE	5.550	-	0.09	154787
[IVI ₃ I E ₇] ⁻ MI=Y, La, Ce, Pr,	Mg _{0.5} Y ₃ GeS ₇	P63	1D	[001]	2.171	1.594	1.59	-	SE	3.992	-	0.17	154780
	Mg _{0.5} Er ₃ GeS ₇	P63	1D	[001]	2.159	1.588	1.67	-	SE	5.707	-	0.17	154789
1-0e, 31, E-3, 3e, 1e	MgY ₆ Si ₂ S ₁₄	P63	1D	[001]	2.128	1.565	1.77	-	SE	3.730	-	0.30	642792

	Mg _{0.5} Ho ₃ GeS ₇	P63	1D	[001]	2.137	1.579	1.82	-	SE	5.615	-	0.14	154788
[Al ₂ S ₄] ²⁻	MgAl ₂ S ₄	R-3m	2D	(001)	2.121	1.510	1.84	2.02	SE	2.438	-	0.19	107308

*Promising cathode materials and corresponding values of their gravimetric capacities are highlighted in bold.

Table S3. 17 promising ternary and quaternary Ca-/S(Se,Te)-containing compounds after the GT analysis sorted in ascending order of the migration barrier energy E_m from BVSE. Electronic band gap energies E_g (if any) were taken from <u>https://materialsproject.org</u>. The theoretical gravimetric capacity C_g was calculated for compounds with electrochemically active transition metals (if the compound does not contain a transition metal, it is indicated as a "SE").

Framework type	Chemical formula	Space Group symmetry	Dimension of migration	Direction of migration	R _{sd} , Å	r _{chan} , Å	<i>E_m</i> (BVSE), eV	E _g , eV	C _g , mAh/ g	<i>ρ,</i> g/cm³	<i>Cv,</i> mAh/cm³	GII	ICSD-#
[K₄Te₃]⁻	Ca _{0.667} K ₄ Te ₃	I4/mcm	1D	[001]	1.988	2.601	0.38	-	SE	3.215	-	0.45	71608
[In ₂ Te ₄] ²⁻	Caln ₂ Te ₄	I4/mcm	1D	[001]	2.099	3.087	0.53	-	SE	5.118	-	0.20	24388
[Zn _{0.5} Se]⁻	Ca _{0.5} Zn _{0.5} Se	P-4m2	2D	(001)	1.924	2.674	0.76	2.25	SE	3.777	-	0.32	167832
[Ga ₂ S ₄] ²⁻	CaGa ₂ S ₄	Ссст	1D	[100]	1.512	1.474	0.95	2.72	SE	3.343	-	0.25	619292
	Ca _{0.5} DyTe ₂	R-3m	2D	(001)	2.084	2.790	1.61	-	SE	6.085	-	0.94	619251
[ME]-M-Dy Ho Er Lui E-S So To	Ca _{0.5} ErTe ₂	R-3m	2D	(001)	2.079	2.783	1.61	-	SE	6.216	-	1.00	619258
[IVIL2] IVI-DY, 110, E1, E0, E-3, Se, Te	Ca _{0.5} LuTe ₂	R-3m	2D	(001)	2.064	2.741	1.75	-	SE	6.383	-	1.01	619399
	Ca _{0.5} HoSe ₂	R-3m	2D	(001)	1.875	2.494	2.06	-	SE	5.757	-	0.19	619371
[ME₄] ⁴⁻ M=Si, Ge, Sn; E=S, Se, Te	Ca ₂ SnS ₄	Pnma	1D	[010]	1.655	1.897	2.32	2.30	SE	2.926	-	0.09	429695
[ME ₂] ⁻ M=Dy, Ho, Er, Lu; E=S, Se, Te	Ca _{0.5} HoTe ₂	R-3m	2D	(001)	1.994	2.651	2.47	-	SE	6.149	-	0.62	619373
	Ca ₂ SiSe ₄	Pnma	1D	[010]	1.743	2.401	2.95	2.42	SE	6.585	-	0.42	619574
[ME 14- M-Si Co Spi E-S So To	Ca_2GeS_4	Pnma	1D	[010]	1.627	1.877	2.95	2.56	SE	2.658	-	0.39	619332
[10124]* 101-31, Ge, 311, E-3, 3e, Te	CaYbInSe ₄	Pnma	1D	[010]	1.698	2.409	3.24	0.00	SE	5.358	-	0.09	67654
	Ca ₂ SiS ₄	Pnma	1D	[010]	1.607	1.869	3.35	3.11	SE	2.324	-	0.46	619542
[YbInS ₄] ²⁻	CaYbInS ₄	Pnma	3D	-	1.574	1.904	3.56	0.00	SE	4.310	-	0.09	67655
[Sc ₂ S ₄] ²⁻	CaSc ₂ S ₄	Pnma	1D	[001]	1.634	2.206	4.31	1.29	SE	2.970	-	0.04	27181
[Y ₂ S ₄] ²⁻	CaY ₂ S ₄	Pnma	1D	[010]	1.473	1.940	4.84	1.54	SE	3.482	-	0.06	619557

Table S4. 28 promising ternary and quaternary Zn-/S(Se,Te)-containing compounds after the GT analysis sorted in ascending order of the migration barrier energy E_m from BVSE. Electronic band gap energies E_g (if any) were taken from <u>https://materialsproject.org</u>. The theoretical gravimetric capacity C_g was calculated for compounds with electrochemically active transition metals (if the compound does not contain a transition metal, it is indicated as a "SE").

					GT								
Framework type	Chemical formula	Space Group symmetry	Dimension of migration	Direction of migration	R _{sd} , Å	r _{chan} , Å	E _m (BVSE), eV	E _g , eV	C _g , mAh/g	<i>ρ,</i> g/cm³	<i>Cv,</i> mAh/cm³	GII	ICSD-#
[ME4]2- M=Al, Cr, Mn, Ga, In, Yb, Ni, Cr;	ZnYb ₂ Se ₄	Fd-3m	3D	-	1.692	2.020	0.17	0.00	SE	6.521	-	0.23	652208
E=S, Se, Te	ZnMn ₂ Se ₄	Fd-3m	3D	-	1.620	2.254	0.19	0.00	109	5.038	549	0.34	643609
[M₃TE₂]²- M=La, Ce, Gd; T=Al, Ga; E=S, Se, Te	ZnLa₃GaSe ₇	<i>P</i> 6 ₃	1D	[001]	1.565	2.014	0.25	-	SE	5.881	-	0.29	431499
[ME4]2- M=Al, Cr, Mn, Ga, In, Yb, Ni, Cr;	ZnCr _{1.94} In _{0.06} Se ₄	Fd-3m	3D	-	1.577	2.183	0.29	-	164	5.608	920	0.19	85040
E=S, Se, Te	ZnCr _{1.95} Ni _{0.05} Se ₄	Fd-3m	3D	-	1.576	2.181	0.29	-	166	5.586	927	0.46	93392
[Cl ₂ S ₅] ¹²⁻	$Zn_6Cl_2S_5$	Стст	2D	(100)	1.725	1.910	0.29	-	SE	2.658	-	1.11	419561
[NIE4]2 NI-AL Cr. May Co. In Vib Nij Cr.	ZnCr _{1.6} Ga _{0.4} Se ₄	Fd-3m	3D	-	1.576	2.186	0.30	-	163	5.679	926	0.90	88795
[WIE4]2-WI=AI, CI, WIII, Ga, III, YD, NI, CI;	ZnCr ₂ Se ₄	Fd-3m	3D	-	1.583	2.188	0.31	0.05	166	5.552	922	0.05	626760
E=3, 36, 16	ZnCr _{1.85} Al _{0.15} Se ₄	Fd-3m	3D	-	1.577	2.183	0.33	-	167	5.517	921	0.10	157339
[Nb ₆ S ₈] ²⁻	ZnNb ₆ S ₈	P6₃/m	1D	[001]	1.955	2.699	0.34	-	122	5.883	718	0.81	645346
[In ₂ S ₆] ⁶⁻	Zn ₃ In ₂ S ₆	P3m1	2D	(001)	1.577	2.007	0.34	0.00	SE	4.187	-	0.23	68645
[ME4]2- M=Al, Cr, Mn, Ga, In, Yb, Ni, Cr; E=S, Se, Te	ZnMn₂S₄	Fd-3m	3D	-	1.525	2.135	0.36	0.00	176	3.584	631	0.30	643504
MTS 12-M-LA VIT-GO SILE-S SO TO	ZnLa ₆ Ge ₂ S ₁₄	<i>P</i> 6 ₃	1D	[001]	1.528	1.905	0.43	-	SE	4.592	-	0.14	636870
$[101_{6}1_{2}3_{14}]^{-1}$ 101–La, f, 1–Ge, Si, E–S, Se, Te	ZnLa ₆ Si ₂ S ₁₄	<i>P</i> 6 ₃	1D	[001]	1.524	1.943	0.45	-	SE	4.379	-	0.13	641849
[CaOS] ²⁻	ZnCaOS	Стст	2D	(001)	1.582	2.106	0.46	-	SE	3.658	-	0.12	245309
	$ZnAl_{1.8}Ga_{0.2}S_4$	Fd-3m	3D	-	1.508	2.083	0.47	-	SE	3.394	-	0.26	607798
[ME4]2- M=Al, Cr, Mn, Ga, In, Yb, Ni, Cr;	$ZnAl_2S_4$	Fd-3m	3D	-	1.507	2.083	0.47	2.60	SE	3.284	-	0.26	609283
E=S, Se, Te	ZnCr _{1.75} In _{0.25} S ₄	Fd-3m	3D	-	1.608	2.176	0.51	-	257	4.138	1063	0.36	626205
	ZnCr ₂ S ₄	Fd-3m	3D	-	1.615	2.196	0.52	0.04	270	3.976	1074	0.09	164169
[M ₃ TE ₇] ²⁻ M=La, Ce, Gd; T=Al, Ga; E=S, Se, Te	ZnLa ₃ AlS ₇	<i>P</i> 6 ₃	1D	[001]	1.538	1.916	0.52	2.27	SE	4.496	-	0.23	608324
[PS ₃] ²⁻	ZnPS₃	C2/m	3D	-	1.548	1.964	0.58	2.10	SE	3.207	-	0.25	79557
[ME4]2- M=Al, Cr, Mn, Ga, In, Yb, Ni, Cr; E=S, Se, Te	ZnAlCrS₄	Fd-3m	3D	-	1.604	2.170	0.59	-	295	3.630	1071	0.18	606839
$[M_3TE_7]^2$ M=La, Ce, Gd; T=Al, Ga; E=S,	$ZnY_6Ge_2S_{14}$	<i>P</i> 6 ₃	1D	[001]	1.568	2.113	0.72	-	SE	4.132	-	0.34	637813
Se, Te	ZnY ₆ Si ₂ S ₁₄	<i>P</i> 6 ₃	1D	[001]	1.578	2.156	0.77	-	SE	3.902	-	0.19	249883
[ScGaS ₄] ²⁻	ZnScGaS ₄	P-3m1	2D	(001)	1.524	1.930	0.90	1.02	SE	3.470	-	0.12	656809
[TaS ₂] ⁻	Zn _{0.5} TaS ₂	P6₃/mmc	2D	(001)	1.542	2.065	1.13	-	SE	7.670	-	0.42	651118

[M ₃ TE ₇] ²⁻ M=La, Ce, Gd; T=Al, Ga; E=S,	ZnCe ₃ AlS ₇	<i>P</i> 6 ₃	1D	[001]	1.500	1.920	1.17	0.01	SE	4.624	-	0.13	606507
Se, Te	ZnGd ₃ AlS ₇	<i>P</i> 6 ₃	1D	[001]	1.500	1.952	1.30	1.38	SE	5.282	-	0.24	607922

*Promising cathode materials and corresponding values of their gravimetric capacities are highlighted in bold.

Table S5. 35 promising ternary and quaternary Al-/S(Se,Te)-containing compounds after the GT analysis sorted in ascending order of the migration barrier energy E_m from BVSE. Electronic band gap energies E_g (if any) were taken from <u>https://materialsproject.org</u>. The theoretical gravimetric capacity C_g was calculated for compounds with electrochemically active transition metals (if the compound does not contain a transition metal, it is indicated as a "SE").

					GT								
Framework type	Chemical formula	Space Group symmetry	Dimension of migration	Direction of migration	R _{sd} , Å	r _{chan} , Å	<i>E_m</i> (BVSE), eV	E _g , eV	C _g , mAh/g	<i>ρ,</i> g/cm³	<i>Cv,</i> mAh/cm³	GII	ICSD-#
[BeLa ₃ S ₇] ³⁻	AlBeLa ₃ S ₇	P63	1D	[001]	1.515	1.931	0.06	2.20	SE	4.202	-	0.45	606164
$[M_3E_7]^{5-}$ M=La, Ce, Pr, Nd, Sm, Gd,	$AI_{3.3}La_6S_{14}$	P63	1D	[001]	1.524	1.941	0.07	-	SE	4.230	-	0.37	608320
Tb, Dy, Ho, Er, Y; E=S, Se, Te	$AI_{3.3}Dy_6S_{14}$	P63	1D	[001]	1.503	1.946	0.25	-	SE	5.132	-	0.43	607336
[CaTe ₁₀] ¹⁸⁻	Al ₆ CaTe ₁₀	P4 ₁ 32	3D	-	1.829	2.449	0.33	-	SE	4.518	-	0.19	10046
[Mg ₂ Se ₅] ⁶⁻	$Al_2Mg_2Se_5$	P-3m1	2D	(001)	1.714	2.240	0.33	1.99	SE	3.960	-	0.31	41928
[MS ₄] ⁶⁻ M=Mn, Zn	Al ₂ MnS ₄	R3m	2D	(001)	1.507	1.906	0.34	0.00	226	2.752	622	0.35	608511
[BaS ₇] ³⁻	Al ₄ BaS ₇	Pmn2 ₁	1D	[001]	1.536	1.961	0.37	3.19	SE	2.875	-	0.13	33237
[MS ₄] ⁶⁻ M=Mn, Zn	Al_2ZnS_4	R3m	2D	(001)	1.531	1.980	0.37	0.00	SE	2.979	-	0.23	609280
[MgS ₄] ⁶⁻	Al_2MgS_4	R-3m	2D	(001)	1.577	2.121	0.42	2.02	SE	2.438	-	0.19	107308
[SnTe _{9.892}] ¹⁸⁻	Al _{5.9} SnTe _{9.892}	P3 ₁ 21	3D	-	1.810	2.331	0.45	1.44	SE	4.739	-	0.25	408710
$[(P_2S_6)_3]^{12}$	$AI_4(P_2S_6)_3$	C2	3D	-	1.504	1.901	0.46	2.24	SE	2.472	-	0.34	428186
[M ₃ E ₇] ⁵⁻ M=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y; E=S, Se, Te	$AI_{3.3}La_6Se_{14}$	P63	1D	[001]	1.617	2.175	0.59	-	SE	5.756	-	0.24	608326
[M ₃ TE ₇] ⁻ M=Sm, Y; E=S, Se, Te	Al _{0.33} Sm ₃ SiS ₇	P63	1D	[001]	1.508	2.150	0.60	-	SE	4.832	-	0.16	249886
[M ₃ E ₇] ⁵⁻ M=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y; E=S, Se, Te	Al _{1.65} Ce ₃ Se ₇	P63	1D	[001]	1.609	2.166	0.60	-	SE	5.864	-	0.24	606511
[M ₃ TE ₇] ⁻ M=Sm, Y; E=S, Se, Te	$AI_{0.67}Y_6Ge_2S_{14}$	P63	1D	[001]	1.581	2.139	0.66	-	SE	3.968	-	0.21	425882
	$AI_{3.3}Pr_6Se_{14}$	P63	1D	[001]	1.601	2.157	0.69	-	SE	5.970	-	0.27	609111
[M ₃ E ₇] ⁵⁻ M=La, Ce, Pr, Nd, Sm, Gd,	$AI_{1.65}Gd_3S_7$	P63	1D	[001]	1.502	1.933	0.77	-	SE	4.953	-	0.40	607918
Tb, Dy, Ho, Er, Y; E=S, Se, Te	$Al_{3.3}Nd_6Se_{14}$	P63	1D	[001]	1.651	2.205	0.79	-	SE	6.097	-	0.30	608777
	$AI_{3.3}Sm_6Se_{14}$	P63	1D	[001]	1.641	2.186	0.83	-	SE	6.306	-	0.36	609318
[LiP ₂ S ₆] ³⁻	AlLiP ₂ S ₆	C2/c	1D	[001]	1.506	1.908	0.89	2.76	SE	2.319	-	0.15	425979
	$AI_{3.3}Ho_6S_{14}$	P6 ₃	1D	[001]	1.509	1.983	0.98	-	SE	5.290	-	0.43	608216
[M ₃ E ₇] ⁵⁻ M=La, Ce, Pr, Nd, Sm, Gd,	$AI_{3.3}Gd_6Se_{14}$	P63	1D	[001]	1.630	2.167	1.00	-	SE	6.557	-	0.32	607925
Tb, Dy, Ho, Er, Y; E=S, Se, Te	$Al_{3.3}Tb_6Se_{14}$	P63	1D	[001]	1.628	2.162	1.02	-	SE	6.614	-	0.33	609321
	$AI_{3.3}Dy_6Se_{14}$	P6 ₃	1D	[001]	1.622	2.152	1.08	-	SE	6.758	-	0.36	607337

	$Al_{1.65}Ce_3S_7$	P63	1D	[001]	1.519	1.969	1.17	-	SE	4.338	-	0.17	606503
	Al _{3.3} Ho ₆ Se ₁₄	P63	1D	[001]	1.613	2.134	1.20	-	SE	6.914	-	0.42	608217
[MS₄] ⁶⁻ M=Cd, Hg	Al ₂ HgS ₄	Fd-3m	3D	-	1.508	1.931	1.28	1.70	SE	4.681	-	0.33	608160
[M ₃ E ₇] ⁵⁻ M=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y; E=S, Se, Te	$AI_{3.3}Pr_{6}S_{14}$	P63	1D	[001]	1.510	1.939	1.31	-	SE	4.423	-	0.14	609109
[MS₄] ⁶⁻ M=Cd, Hg	Al ₂ CdS ₄	Fd-3m	3D	-	1.502	1.923	1.36	2.69	SE	3.645	-	0.28	43025
[NA E 15- Mala Ca Dr. Nd Sm. Cd	$AI_{3.3}Nd_6S_{14}$	P63	1D	[001]	1.504	1.935	1.39	-	SE	4.532	-	0.15	608775
$[VI_{3}E_{7}]^{\circ}$ $VI=Ld, Ce, PI, Nu, SIII, Gu, The Div Has Er V: E-S So To$	$AI_{3.3}Sm_6S_{14}$	P63	1D	[001]	1.507	1.954	1.58	-	SE	4.746	-	0.14	609257
TD, Dy, HO, EI, T, E-3, Se, Te	Al _{3.3} Tb ₆ S ₁₄	P63	1D	[001]	1.501	1.951	1.83	-	SE	5.039	-	0.16	609262
[NaP ₂ S ₆] ³⁻	AlNaP ₂ S ₆	Fdd2	1D	[1-10]; [110]	1.512	1.939	1.85	2.66	SE	2.200	-	0.18	425980
$[M_3E_7]^{5-}$ M=La, Ce, Pr, Nd, Sm, Gd,	$AI_{3.3}Y_6S_{14}$	<i>P</i> 6 ₃	1D	[001]	1.500	1.907	2.42	-	SE	3.807	-	0.32	609267
Tb, Dy, Ho, Er, Y; E=S, Se, Te	$AI_{1.67}Er_3S_7$	<i>P</i> 6 ₃	1D	[001]	1.503	1.917	2.26	-	SE	5.442	-	0.43	607434

*Promising cathode materials and corresponding values of their gravimetric capacities are highlighted in bold.

Working Ion	Chemical formula	ICSD-#	GII	E _m (dim) (eV)	$\Delta E_{\rm m}$ (eV)	Note
NA~ ²⁺	MgYb ₂ Se ₄	76053	0.29	0.13	0.10	Δ <i>E_m</i> <0.15 eV
Working IonChemical formulaMg2+MgYb_2Se_4Mg2+MgYb_2S_4Ca2+Ca_{0.667}K_4TCaln_2ZnYZnYZn'		642803	0.19	0.43	-0.19	Δ <i>E_m</i> <0.15 eV
Ca ²⁺	Ca _{0.667} K ₄ Te ₃	71608	0.45	0.38	0.09	ΔE_m <0.15 eV
Ca	Caln ₂ Te ₄	24388	0.20	0.53	-0.22	ΔE_m <0.15 eV
	ZnYb ₂ Se ₄	652208	0.23	0.17	0.15	Prospective conductor
	ZnMn ₂ Se ₄	643609	0.34	0.19	-0.08	Δ <i>E_m</i> <0.15 eV
	ZnLa ₃ GaSe ₇	431499	0.29	0.25	0.66	<i>GII</i> > 0.26
	ZnCr _{1.94} In _{0.06} Se ₄	85040	0.19	0.29	0.09	Δ <i>E_m</i> <0.15 eV
	ZnCr _{1.95} Ni _{0.05} Se ₄	93392	0.46	0.29	-0.26	Δ <i>E_m</i> <0.15 eV
	Zn ₆ Cl ₂ S ₅	419561	1.11	0.29	0.32	GII is high. Probably, ill-defined structure
	ZnCr _{1.6} Ga _{0.4} Se ₄	88795	-	0.30	0.26	GII is high. Probably, ill-defined structure
	ZnCr ₂ Se ₄	626760	0.05	0.31	0.09	Δ <i>E</i> _m <0.15 eV
	ZnCr _{1.85} Al _{0.15} Se ₄	157339	0.10	0.33	0.08	Δ <i>E_m</i> <0.15 eV
	ZnNb ₆ S ₈	645346	0.81	0.34	-0.32	Δ <i>E_m</i> <0.15 eV
Zn ²⁺	Zn ₃ In ₂ S ₆	68645	0.23	0.34	-0.10	Δ <i>E</i> _m <0.15 eV
	ZnMn ₂ S ₄	643504	0.30	0.36	-0.21	Δ <i>E</i> _m <0.15 eV
	ZnLa ₆ Ge ₂ S ₁₄	636870	0.14	0.43	0.26	Prospective conductor
	ZnLa ₆ Si ₂ S ₁₄	641849	0.13	0.45	0.47	Prospective conductor
	ZnCaOS	245309	0.12	0.46	0.23	Prospective conductor
	ZnAl _{1.8} Ga _{0.2} S ₄	607798	0.26	0.47	0.30	Prospective conductor
	ZnAl ₂ S ₄	609283	0.26	0.47	0.60	Prospective conductor
	ZnCr _{1.75} In _{0.25} S ₄	626205	0.36	0.51	0.20	$GII > 0.26$ (DFT: E_m (ZnCr ₂ S ₄)=2.34 eV)
	ZnCr ₂ S ₄	164169	0.09	0.52	-0.09	Δ <i>E_m</i> <0.15 eV
	ZnLa ₃ AlS ₇	608324	0.23	0.52	0.71	Prospective conductor
	ZnPS ₃	79557	0.25	0.58	-0.12	Δ <i>E_m</i> <0.15 eV
	ZnAlCrS ₄	606839	0.18	0.59	-0.50	Δ <i>E_m</i> <0.15 eV
	AlBeLa ₃ S ₇	606164	0.45	0.06	1.38	<i>GII</i> > 0.26
	Al _{3.3} La ₆ S ₁₄	608320	0.37	0.07	0.85	<i>GII</i> > 0.26
	Al _{3.3} Dy ₆ S ₁₄	607336	0.43	0.25	0.57	<i>GII</i> > 0.26
	Al ₆ CaTe ₁₀	10046	0.19	0.33	1.11	Prospective conductor
	$Al_2Mg_2Se_5$	41928	0.31	0.33	-0.15	Δ <i>E</i> _m <0.15 eV
	Al ₂ MnS ₄	608511	0.35	0.34	-0.11	Δ <i>E</i> _m <0.15 eV
A 13+	Al ₄ BaS ₇	33237	0.13	0.37	0.18	Prospective conductor
AI	Al ₂ ZnS ₄	609280	0.23	0.37	0.08	Δ <i>E</i> _m <0.15 eV
	Al ₂ MgS ₄	107308	0.19	0.42	-0.20	Δ <i>E_m</i> <0.15 eV
	Al _{5.9} SnTe _{9.892}	408710	0.25	0.45	0.64	Prospective conductor
	$AI_4(P_2S_6)_3$	428186	0.34	0.46	-0.06	Δ <i>E_m</i> <0.15 eV
	$AI_{3.3}La_6Se_{14}$	608326	0.24	0.59	0.18	Prospective conductor
	Al _{0.33} Sm ₃ SiS ₇	249886	0.16	0.60	0.36	Prospective conductor
	Al _{1.65} Ce ₃ Se ₇	606511	0.24	0.60	-0.11	Δ <i>E</i> _m <0.15 eV
*	Prospective conducto	r: fulfillmont	t of all th	ree conditio	ns in section	METHODS - BVSE calculations

Table S6. 40 compounds with a migration energy less than 0.6 eV according to BVSE.

**non-fulfillment of at least one of the conditions in section METHODS - BVSE calculations.

Figure S1. Fluctuations of total energy of the MLn_3TQ_7 structures as a function of the molecular dynamic simulation step (1 step = 1 fs) with 30 ps at 300 K. The first 7 ps of the AIMD simulations are excluded to minimize statistical uncertainty; this area is marked by pink.

Figure S2. The mean squared displacement (MSD) vs simulation step (1 step = 1 fs) plots for the MLn_3TQ_7 structures from AIMD calculations. The first 7 ps of the AIMD simulations are excluded to minimize statistical uncertainty.