Supporting Materials for Thermal and electrical transport properties of two-dimensional Dirac graphenylene: a firstprinciples study

Changhong Zhang¹, Chengyi Hou¹, Yi Lu¹, Le Zhao¹, Haorong Wu¹, Hongyuan

Song¹, Ju Rong^{1*}, Lan Yu^{1*}, Xiaohua Yu¹

¹Faculty of Materials Science and Engineering, Kunming University of Science and

Technology, Kunming, 650093, China

1 · Band structures calculated by HSE06 functional for graphenylene

Figure S1. Band structures calculated by HSE06 functional for graphenylene.

2. The radial distribution function of graphenylene

Figure S2. The radial distribution function of graphenylene.

3. Lattice parameters and atomic fractional positions for graphenylene

System	Lattice parameters	Fractional coordinates
graphenylene	a = 6.769 Å, b = 11.724 Å, c = 20.0 Å, θ = 90°	C1 $(0.609, 0.063, 0.499)$, C2 $(0.109, 0.563, 0.499)$, C3 $(0.600, 0.272, 0.499)$, C4 $(0.100, 0.772, 0.499)$, C5 $(0.290, 0.163, 0.499)$, C6 $(0.790, 0.663, 0.499)$, C7 $(0.390, 0.936, 0.499)$, C8 $(0.890, 0.436, 0.499)$, C9 $(0.399, 0.727, 0.499)$, C10 $(0.899, 0.227, 0.499)$, C11 $(0.709, 0.836, 0.499)$, C12 $(0.209, 0.336, 0.499)$, C13 $(0.609, 0.936, 0.499)$, C14 $(0.109, 0.436, 0.499)$, C15 $(0.600, 0.727, 0.499)$, C16 $(0.100, 0.227, 0.499)$, C17 $(0.290, 0.836, 0.499)$, C18 $(0.790, 0.336, 0.499)$, C19 $(0.399, 0.063, 0.499)$, C20 $(0.890, 0.563, 0.499)$, C21 $(0.399, 0.272, 0.499)$, C22 $(0.899, 0.772, 0.499)$, C23 $(0.709, 0.163, 0.499)$, C24 $(0.209, 0.663, 0.499)$

 Table S1. Lattice parameters and atomic fractional positions for graphenylene.