Supplementary Information

Inducing Abundant Magnetic Phases and Enhancing Magnetic Stability by Edge Modifications and Physical Regulations for NiI\(_2\) Nanoribbons

Yu Yi, Jianing Han*, Zhanhai Li, Shengguo Cao, Zhenhua Zhang*

*Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, China.

Fig. S1. (a)Top view, (b) side view and magnetic ordering of bulk NiI\(_2\) atomic structure, in which the red dashed rhombus indicates the \(1\times1\) unit cell. (c) Band structure of bulk NiI\(_2\). (d) Band structure of NiI\(_2\) monolayer.
Fig. S2. Phonon dispersion for ZNiI$_2$NRs. (a) M0, (b) M5.

Fig. S3. Energy and temperature versus time profiles of nanoribbons in annealing molecular dynamics simulations. (a) M0, (b) M1, (c) M2, (d) M3, (e) M4, and (f) M5.
Fig. S4. For M3. (a) Averaged magnetic moment for whole ribbon and edged Ni and I atoms in the FM state versus strain, (b) edged atom bond lengths d_1, d_2, d_3, and d_4 versus strain, (c) edge atom bond angles θ_1 and θ_2 versus strain, (d) the band structure in the FM state versus strain, and (e) magnetic exchange energy ΔE and Curie temperature T_C versus strain.