Design Principles for Self-assembly of Similar Molecules

Junben Wenga,b, Haojiang Yaoa,c, Junfeng Wanga,d and Guohui Li.a,*

a Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.

b University of Chinese Academy of Sciences, Beijing, China

c School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China

d School of Physics, Liaoning University, Shenyang 110036, P. R. China

Corresponding: ghli@dicp.ac.cn
CONTENTS

S1. The nonbonded interaction parameters of coarse-grained models ...3

S2. The bonded interaction parameters of coarse-grained models..3

S3. The morphology evolution processes of three times simulations during the first step simulation3

S4. The morphology evolution processes of three times simulations during the second step simulation3
S1. The nonbonded interaction parameters of coarse-grained models

Table S1. The nonbonded interaction parameters between two coarse-grained beads

<table>
<thead>
<tr>
<th>Bead\textsubscript{i}</th>
<th>Bead\textsubscript{j}</th>
<th>ε_{ij} (kcal/mol)</th>
<th>σ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC3</td>
<td>SC3</td>
<td>0.813</td>
<td>0.43</td>
</tr>
<tr>
<td>SC3</td>
<td>P3</td>
<td>0.359</td>
<td>0.47</td>
</tr>
<tr>
<td>SC3</td>
<td>C2</td>
<td>1.076</td>
<td>0.47</td>
</tr>
<tr>
<td>SC3</td>
<td>C1</td>
<td>1.076</td>
<td>0.47</td>
</tr>
<tr>
<td>SC3</td>
<td>SQ0</td>
<td>0.09</td>
<td>0.43</td>
</tr>
<tr>
<td>SC3</td>
<td>SC5</td>
<td>0.717</td>
<td>0.43</td>
</tr>
<tr>
<td>SQ0</td>
<td>SQ0</td>
<td>0.359</td>
<td>0.55</td>
</tr>
<tr>
<td>SQ0</td>
<td>SC5</td>
<td>0.09</td>
<td>0.43</td>
</tr>
<tr>
<td>SC5</td>
<td>SC5</td>
<td>0.717</td>
<td>0.43</td>
</tr>
<tr>
<td>C2</td>
<td>C2</td>
<td>1.076</td>
<td>0.47</td>
</tr>
<tr>
<td>C2</td>
<td>C1</td>
<td>1.076</td>
<td>0.47</td>
</tr>
<tr>
<td>C2</td>
<td>SQ0</td>
<td>0.478</td>
<td>0.62</td>
</tr>
<tr>
<td>C2</td>
<td>SC5</td>
<td>0.956</td>
<td>0.47</td>
</tr>
<tr>
<td>C1</td>
<td>C1</td>
<td>1.076</td>
<td>0.47</td>
</tr>
<tr>
<td>C1</td>
<td>SQ0</td>
<td>0.478</td>
<td>0.62</td>
</tr>
<tr>
<td>C1</td>
<td>SC5</td>
<td>0.956</td>
<td>0.47</td>
</tr>
<tr>
<td>Na</td>
<td>Na</td>
<td>0.55</td>
<td>0.47</td>
</tr>
<tr>
<td>Na</td>
<td>C2</td>
<td>0.645</td>
<td>0.47</td>
</tr>
<tr>
<td>Na</td>
<td>C1</td>
<td>0.645</td>
<td>0.47</td>
</tr>
<tr>
<td>Na</td>
<td>SQ0</td>
<td>0.12</td>
<td>0.47</td>
</tr>
<tr>
<td>Na</td>
<td>SC5</td>
<td>0.645</td>
<td>0.47</td>
</tr>
<tr>
<td>P3</td>
<td>P3</td>
<td>0.645</td>
<td>0.47</td>
</tr>
<tr>
<td>P3</td>
<td>C2</td>
<td>0.359</td>
<td>0.47</td>
</tr>
<tr>
<td>P3</td>
<td>C1</td>
<td>0.239</td>
<td>0.47</td>
</tr>
<tr>
<td>P3</td>
<td>SQ0</td>
<td>0.12</td>
<td>0.47</td>
</tr>
<tr>
<td>P3</td>
<td>SC5</td>
<td>0.359</td>
<td>0.47</td>
</tr>
</tbody>
</table>
S2. The bonded interaction parameters of coarse-grained models

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Atom_{i,j}</th>
<th>Atom_{j,k}</th>
<th>Atom_{k,i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-AP_{O}</td>
<td>A1 1 2</td>
<td>A2 6 1</td>
<td>A3 7 5</td>
</tr>
<tr>
<td></td>
<td>A4 8 5</td>
<td>A5 8 4</td>
<td>A6 5 7</td>
</tr>
<tr>
<td></td>
<td>A7 7 2</td>
<td>A8 1 2</td>
<td>A9 1 2</td>
</tr>
<tr>
<td></td>
<td>A10 1 3</td>
<td>A11 7 5</td>
<td>A12 1 2</td>
</tr>
<tr>
<td></td>
<td>A13 1 2</td>
<td>A14 7 5</td>
<td>A15 1 2</td>
</tr>
<tr>
<td></td>
<td>A16 7 5</td>
<td>A17 1 2</td>
<td>A18 1 2</td>
</tr>
<tr>
<td></td>
<td>A19 7 5</td>
<td>A20 1 2</td>
<td>A21 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Atom_{i,j}</th>
<th>Atom_{j,k}</th>
<th>Atom_{k,i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-AP_{N}</td>
<td>A1 1 2</td>
<td>A2 6 1</td>
<td>A3 7 5</td>
</tr>
<tr>
<td></td>
<td>A4 8 5</td>
<td>A5 8 4</td>
<td>A6 5 7</td>
</tr>
<tr>
<td></td>
<td>A7 7 2</td>
<td>A8 1 2</td>
<td>A9 1 2</td>
</tr>
<tr>
<td></td>
<td>A10 1 3</td>
<td>A11 7 5</td>
<td>A12 1 2</td>
</tr>
<tr>
<td></td>
<td>A13 1 2</td>
<td>A14 7 5</td>
<td>A15 1 2</td>
</tr>
<tr>
<td></td>
<td>A16 7 5</td>
<td>A17 1 2</td>
<td>A18 1 2</td>
</tr>
<tr>
<td></td>
<td>A19 7 5</td>
<td>A20 1 2</td>
<td>A21 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Atom_{i,j}</th>
<th>Atom_{j,k}</th>
<th>Atom_{k,i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-AP</td>
<td>A1 1 2</td>
<td>A2 6 1</td>
<td>A3 7 5</td>
</tr>
<tr>
<td></td>
<td>A4 8 5</td>
<td>A5 8 4</td>
<td>A6 5 7</td>
</tr>
<tr>
<td></td>
<td>A7 7 2</td>
<td>A8 1 2</td>
<td>A9 1 2</td>
</tr>
<tr>
<td></td>
<td>A10 1 3</td>
<td>A11 7 5</td>
<td>A12 1 2</td>
</tr>
<tr>
<td></td>
<td>A13 1 2</td>
<td>A14 7 5</td>
<td>A15 1 2</td>
</tr>
<tr>
<td></td>
<td>A16 7 5</td>
<td>A17 1 2</td>
<td>A18 1 2</td>
</tr>
<tr>
<td></td>
<td>A19 7 5</td>
<td>A20 1 2</td>
<td>A21 1 2</td>
</tr>
</tbody>
</table>

Dihedral Angle Type

<table>
<thead>
<tr>
<th>Angle Type</th>
<th>Atom_{i,j}</th>
<th>Atom_{j,k}</th>
<th>Atom_{k,l}</th>
<th>Atom_{l,i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 1 2 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 6 1 2 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 8 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5 8 4 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6 5 7 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7 7 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A20 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dihedral Angle Type

<table>
<thead>
<tr>
<th>Angle Type</th>
<th>Atom_{i,j}</th>
<th>Atom_{j,k}</th>
<th>Atom_{k,l}</th>
<th>Atom_{l,i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 1 2 3 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 6 1 2 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 8 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5 8 4 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6 5 7 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7 7 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19 7 5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A20 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21 1 2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S1. The bonded interaction parameters of s-AP\textsubscript{O} (a), s-AP\textsubscript{N} (b), m-AP\textsubscript{O} (c), m-AP\textsubscript{N} (d), s-BP\textsubscript{O} (e), and s-BP\textsubscript{N} (f). Because all the bond lengths and some angles have a very small fluctuation, which are regarded as constants, they require a large stiffness coefficient. At the same time, the stability of the overall molecular structure energy is required, therefore, the maximum value of k_b and k_a are set to be 10000 kcal/mol and 200 kcal/mol after trying.
S3. The morphology evolution processes of three times simulations during the first step simulation
Figure S2. The morphology evolution processes of s-AP$_O$ (a), s-AP$_N$ (b), m-AP$_O$ (c), m-AP$_N$ (d), s-BP$_O$ (e), and s-BP$_N$ (f) during the first step simulation.
S4. The morphology evolution processes of three times simulations during the second step simulation
Figure S3. The morphology evolution processes of s-AP\(_O\) (a), s-AP\(_N\) (b), m-AP\(_O\) (c), m-AP\(_N\) (d), s-BP\(_O\) (e), and s-BP\(_N\) (f) during the second step simulation (fusion step).